
Further Decimating the Inductive Programming Search Space with
Instruction Digrams

Edward Mc Daida and Sarah Mc Daidb
Zoea Ltd., 20-22 Wenlock Road, London, N1 7GU, UK

{edward.mcdaid, sarah.mcdaid}@zoea.co.uk

Keywords: Inductive Programming, State Space Search, Knowledge Representation.

Abstract: Overlapping instruction subsets derived from human originated code have previously been shown to
dramatically shrink the inductive programming search space, often by many orders of magnitude. Here we
extend the instruction subset approach to consider direct instruction-instruction applications (or instruction
digrams) as an additional search heuristic for inductive programming. In this study we analyse the
frequency distribution of instruction digrams in a large sample of open source code. This indicates that the
instruction digram distribution is highly skewed with over 93% of possible instruction digrams not
represnted in the code sample. We demonstrate that instruction digrams can be used to constrain instruction
selection during search, further reducing size of the the search space, in some cases by several orders of
magnitude. This significantly increases the size of programs that can be generated using search based
inductive programming techniques. We discuss the results and provide some suggestions for further work.

a https://orcid.org/0000-0001-8684-0868
b https://orcid.org/0000-0001-7643-6722

1 INTRODUCTION

The production of software remains a complex,
specialist, labour intensive and expensive activity.
This is despite many (mostly incremental) advances
in programming language design and software
development methods [1]. In this context the idea of
using of AI to simplify or even automate coding is
appealing and much work has been directed to this
end [2,3].

Recently, there has been significant interest and
progress in the application of deep learning and
large language models to the production of code [4].
While promising, these approaches are not directly
relevant to the work described in this paper and will
not be discussed here in further detail. Instead, our
focus is inductive programming - a field that has
been active over a long period [5].

The goal of inductive programming is to
transform a specification - such as a set of test cases
- directly into software. Within this domain a variety
of approaches have been developed [6] but
fundamentally these are all limited by the size of the
search space [7].

Most high-level programming languages include
around 200 instructions, comprising operators as
well as core and standard library functions. In
simplistic terms this dictates the branching factor of
the inductive programming search space - which
grows exponentially with increasing target program
size.

Aside from trivial cases it is not possible to
determine the output of a given source code program
without executing it. As a result, all inductive
programming approaches rely on some form of
generate and test. The huge size of this search space
has meant that until recently inductive programming
was limited to the production of small programs [7].

Zoea is an inductive programming system that
has been developed over the last few years [8]. To
some extent Zoea sidesteps the inductive
programming search problem by avoiding search
where possible and through the paradigm of
composable inductive programming (CIP) [9]. CIP
is an iterative and incremental process that involves
the composition of small program units, which are
generated using inductive programming. This is
facilitated by a visual programming language called
Zoea Visual [10]. In principle CIP allows inductive

programming to be used to incrementally produce
software of any size [11]. However, the size of
individual program units is still limited in some
cases by search.

Zoea employs a blackboard architecture that
supports clustered deployment [12]. Zoea
knowledge sources also support partitioning of the
search space using subsets of the instruction set.
Recently, a study was conducted to produce new
instruction subsets capable of supporting hundreds
of cores [13]. This involved the creation of
thousands of small overlapping instruction subsets.
These subsets were derived from a large sample of
open source code. Subsets are created by clustering
the program unit instruction subsets from the code
sample. It was found that the derived instruction
subsets generalised quickly to cover unseen code.
They also effectively reduce the overall size of the
search space - often by many orders of magnitude.

Instruction subsets shrink the search space due to
the skewed frequency distribution of individual
instructions and the even more skewed distribution
of instruction co-occurrence within program units.
Human developers do not use all instructions or
combinations of instructions with equal probability
and the skewed patterns of instruction co-occurrence
in human code persist in the derived subsets. As
such, instruction subsets represent a form of low-
level tacit programming knowledge [14]. For
inductive programming they also represent a useful
and general heuristic [15].

The previous study noted the highly skewed
distribution of instruction pair co-occurrence within
program units. This raises the possibility that the
frequency distribution of direct instruction
application might represent another useful heuristic.

In Zoea, candidate solution programs are
assembled by combining instructions to form a
functional program that matches the test cases.
Factors such as the data type compatibility of
instruction inputs and outputs already constrain
which instructions can be applied in many cases.
Also, we know from our work with instruction
subsets that many pairs of individual instructions are
never used together by human developers within the
same program unit - or are very rarely used. If we
understood how human developers combine
individual instructions to form programs then we
could use this information to inform our choice of
which instruction to apply next for any partially
constructed solution candidate.

An instruction digram is simply an ordered pair
of instruction identifiers that correspond to the direct
application of one instruction to the return value of

another instruction. The set of all possible
instruction digrams can easily be enumerated from
any set of instructions. For example, if the set of
instructions is { a … z } then the set of all possible
instruction digrams is { [a,a], [a,b] … [z,y], [z,z] }.
Each possible instruction digram has a frequency
distribution across all of the programs in any code
sample – which may be zero.

If human developers use only a subset of all
possible instruction digrams, then we can easily
identify that subset and use it as an additional search
constraint. As with instruction subsets, instruction
digrams can be considered a form of heuristic.
Instruction digrams could be used as a heuristic in
their own right but the intention is to combine their
use with that of instruction subsets to yield a larger
reduction in search space size.

The key question addressed here is: does the use
of instruction digrams reduce the branching factor
and thus the size of the inductive programming
search space, and if so by how much?

2 APPROACH

This study reused the same data set that was used for
the creation of instruction subsets [13]. This consists
of a snapshot of the largest 1000 repositories on
GitHub [16] that was taken on 13 May 2022. Only
python [17] code is used and the data set includes
approximately 14.75 million lines of code in that
language. Python is a popular language with an
instruction set that is typical of many similar
languages. It is also relatively easy to parse.

Identifying instruction digrams is more involved
than the production of instruction subsets as it
requires parsing rather than tokenisation. The python
AST (abstract syntax tree) module [18] would be a
natural choice for this task however it is not
backwards compatible and as such is unable to
process different python versions at the same time.
The code sample contains python source code in a
variety of versions.

Instead, a simple expression parser for python
was constructed. Pre-processing with regular
expressions filtered out comments and any code that
did not contain multiple instructions. Also, literal
strings were replaced with variable identifiers in
order to prevent their contents from interfering with
the parsing process. This resulted in a series of code
fragments containing instructions that were then
parsed individually.

A separate parse tree was produced for each code
fragment that corresponded to the application of two
or more instructions. The parse tree includes a node

for each instruction (operator or function) together
with links for each input or argument. Such a parse
tree can include any number of instruction digrams -
corresponding to any two directly connected nodes.
Once constructed, each node in the parse tree was
visited in turn, to identify all linked pairs of
instruction nodes. The instruction digram patterns
that were identified include the following examples:
• function(function())
• function().function()
• <expression> <operator> function()
• function() <operator> <expression>
• function(<expression> <operator>

<expression>)
• <expression> <operator> <expression>

<operator> <expression>

An ordered pair of instruction identifiers [F1, F2]
uniquely identifies each digram, where instruction
F2 uses the output value of instruction F1 as an
input. In temporal terms, F1 is executed before F2.
Any occurrence of [F2, F1] is treated as a different
digram.

For each source code file, the number of
occurrences of each distinct digram was recorded.
Once all files had been processed these numbers
were totalled to produce counts for each digram
across all files in a given repo. A similar roll up
produced totals for each digram across all repos in
the code sample.

A high level summary of the process for
identifying instruction digrams is as follows:
1. The zip file for each repo was unpacked into a

temporary folder;
2. All non-python code and data was deleted;
3. Each python source file was pre-processed and

split into expressions;
4. Each expression was parsed to produce an AST;
5. Each AST was walked to identify every digram;
6. Counts for each unique digram for each file were

produced;
7. Total instruction digram counts across all repos

were produced.

A skewed digram frequency distribution would be
required for digrams to represent a useful search
heuristic. Ideally, this would include a significant
number of digrams that are rarely or never used.

We used the set of digrams identified in the code
sample to produce new search space size estimates
and compared these with the results of the previous
study. The objective here was to determine whether
we obtained another significant reduction in the size
of the search space using instruction digrams.

Estimation of the search space size was
accomplished by using the digrams to determine
which members of the instruction subset could be
applied at each level in a search tree, up to some
specified maximum depth. In doing this we only
considered digrams where both instructions were
present in each instruction subset.

At the first level of the search tree it was
assumed that all subset instructions could be applied.
At each subsequent level an instruction F2 could
only be applied if a digram [F1, F2] existed, such
that instruction F1 was present on a previous level
and instruction F2 was a member of the current
instruction subset. The size of the search space was
measured as the total number of instructions present
on all levels.

3 RESULTS

Figure 1 shows the instruction digram frequency
distribution across the entire code sample. It can be
seen that a small number of digrams occur
frequently while most digrams are much less
common. Over 50% of digrams occur only once and
over 90% occur 10 or fewer times.

Figure 1: Instruction digram frequency distribution.

The digrams that do occur represent just 6.25% of
all possible digrams. This means that 93.75% of
possible digrams are not represented in the code
sample at all. Figure 2 provides a visualisation of
digram frequency (or rather scarcity) as a 3-d chart.
The x and y axes both correspond to individual
instructions and each x-y point corresponds to an
ordered pair of instructions - a potential digram. The
colour of each point (z-axis) represents digram
frequency using a log scale to enhance the detail. It
is clear from Figure 2 that many digrams are not
used and most of those that are used are infrequent.

Figure 2: Instruction digram frequency visualisation.

Some of the digrams that do not occur are absent
due to data type constraints. For example, an
instruction that returns a string cannot be used as an
input for a second instruction that expects a number.
Another reason why some digrams might be missing
is due to redundancy. For example, there is no point
in applying one instruction to reverse a list and then
another instruction to sort the list. In this scenario
the effect of reverse instruction is completely
undone by the sort. The same is true of pairs of
instructions that have opposite effects such as
conversion to uppercase and lowercase, or reverse-
reverse. Functional equivalence of pairs of
instructions is another possibility.

However, these explanations do not account for
many of the missing potential digrams. Other
possible explanations include preference, different
forms of bias or the applicability of particular
instructions to different kinds of problems.
Regardless of the reason it is clear that the
instruction digram distribution holds across a large
and diverse code sample. As a result we can
potentially take advantage of it to constrain search.

Instruction digrams can be applied as constraints
to instruction subsets. This effectively reduces the
number of ways in which instructions from the
instruction subset can be combined.

Instruction subsets exist with different maximum
sizes. The maximum subset size dictates an upper
limit in terms of the number of distinct instructions
that can appear in a solution. Note that this does not
place a limit in the total number of instructions since
the same instruction can, and often is, repeated
within a given program unit.

Placing a limit on the number of instructions is
useful given that 90% of program units contain 10 or
fewer distinct instructions while only 2% of program
units contain more than 20 instructions. Having
smaller instruction subsets greatly reduces the

overall size of the search space so if we search using
smaller subsets first then we will find most solutions
and do so more quickly. If this proves fruitless and
we are prepared to expend the additional effort then
we can try progressively larger instruction subsets
until a solution is found.

Instruction digrams can reduce the size of the
search space for an instruction subset since it allows
us to ignore many instruction applications that we
might otherwise have to consider. If we accept that
we will only allow instruction applications that are
defined as instruction digrams and we know that
only a small proportion of possible instruction
digrams exist then we can expect to create many
fewer instruction applications.

We applied the instruction digrams as constraints
to the instruction subsets that were produced in the
previous study and measured the resulting search
space size using the approach described earlier.
Figure 3 shows the search space sizes for instruction
subsets of size 10 - with and without instruction
digrams. This chart shows data flow depth as the x-
axis. This corresponds to the maximum depth of the
search graph as measured in instructions from the
root. The y-axis corresponds to search space size as
measured in search space nodes and uses a log scale.

It can be seen that the size of the search space
using all instructions (red '+' line) grows rapidly.
The search space size quickly makes exhaustive
search infeasible, whatever approach is used.
Instruction subsets (green 'x' line) provide a
significant reduction in search space size, by only
using combinations of instructions that people use
when writing software. Instruction subsets with
instruction digrams (blue dots) can be seen to give a
further significant reduction in search space size.
There are around 6000 instruction subsets of size 10
so these have been jittered to improve visibility. In
this case the jitter adds a small random value to the
x-axis that results in the data points being distributed
around the relevant line. This random value has no
significance from a data perspective.

The search space sizes for instruction subsets
plus digrams assume a wide range of values. This is
to be expected since the subsets contain different
instructions and these will correspond to different
sets of digrams. Some of the instructions are
common while many are rare. Rare instructions are
expected to have fewer corresponding digrams. An
instruction subset with few digrams will have a
significantly smaller search space than one with
many digrams.

Figure 3: Search space sizes for subset size 10.

Above data flow depth of 5, the worst case (largest)
search space size for digrams is at least one order of
magnitude smaller than for instruction subsets alone.
At greater data flow depths the size of the reduction
continues to increase. We can see by tracing
horizontally from the (green) subset line to the
highest (blue) digram point that for the same
resources instruction digrams allow deeper
exploration of the search graph by between 1 and 4
levels.

Figure 4 shows a similar chart for instruction
subset size 20. Here the line for all instructions is
identical. Larger subsets naturally have a larger
corresponding search space. As a result the
instruction digram sizes are also larger. However,
there is a much greater reduction in search space
size. Taken together, subset sizes 10 and 20 account
for 98% of the program units in the code sample.

Figure 4: Search space sizes for subset size 20.

Figure 5 shows the search space sizes for subset size
50. This is included mainly to show the continuation
of the trend. The reduction in search space size
continues to increase. Also, it is clearer that the
spread of the digram search space sizes is becoming
narrower.

 Figure 5: Search space sizes for subset size 50.

The overall distribution of search space sizes is not
easily discernible from Figures 3-5. Figure 6 shows
the search space sizes for instruction subsets plus
digrams. The lines correspond to all of the blue dots
in the previous three figures. These are plotted for
different subset sizes and the individual subsets have
been sorted in order of ascending search space size
along the x-axis.

It is clear that there are different numbers of
subsets for different subset sizes. The kink at the end
of each line shows that relatively few subsets have
significantly larger search space sizes than would be
expected from the main sequence trend. These
correspond to the highest search space sizes for data
flow depth 20 in Figures 3-5 (blue dots). It should be
remembered that even the largest search space sizes
represent a significant reduction. The key take-away
is that the majority of subsets have search space
sizes that are much smaller than the maximum.

Figure 6: Reduced instruction subset search space sizes.

The reduction in search space size provided by
instruction digrams is less dramatic than that for
instruction subsets but it is still significant.
Particularly at subset size 10, many of the individual
search space sizes for subsets plus digrams are 5 or

more orders of magnitude smaller that for subsets
alone.

In Zoea different subsets are processed by a pool
of worker nodes. The above results mean that all of
the jobs would complete more quickly and perhaps
half of the jobs required to cover the entire search
space would also complete in a tiny fraction of the
time required otherwise.

4 DISCUSSION

As with instruction subsets, instruction digrams can
be viewed as another type of low level, tacit
software development knowledge. In the same way,
the identification and exploitation of instruction
digrams represent a form of knowledge elicitation.
Other similar forms of low level programming
knowledge may also exist and if so should be
investigated.

The whole approach is predicated on the
assumption that there is merit in mimicking the way
in which people develop software. In the absence of
alternatives this is at least an expedient strategy.
From another perspective, the size of the inductive
programming search space has been a major and
pernicious obstacle for decades. Thus any approach
that significantly reduces this problem is of interest.
However, there remains a risk that by excluding the
consideration of many combinations of instructions
we might overlook some simpler and innovative
solutions to problems.

It is not known why the instruction digram
frequency distribution in human code is skewed in
the way that it is. This is no doubt somehow
influenced by the skewed instruction distribution but
why are some digrams common while many possible
digrams are never used? Human patterns of code use
may not be optimal and alternative digram
distributions may exist that are better in some ways.

The instruction digram approach does not
consider context. Larger structures such as trigrams
or n-grams might be worth investigating.
Alternatively, context could be applied extrinsically.
Context would necessarily involve instructions that
have already been hypothesised as part of the
candidate solution, at lower levels in the search tree
and on data flow paths that lead to the current node.
A simplistic approach might utilise different
instruction subsets and different sets of digrams for
various domains. Indeed, it is possible that this
occurs already to some extent in the case of subsets,
as a result of clustering. Instructions that co-occur in
particular kinds of code are likely to end up in the
same subsets.

Integration of instruction subsets and instruction
digrams is remarkably easy. These elements
represent two different forms of knowledge:
1. What instructions to use together and
2. How to combine instructions to form programs.

Perhaps this experience can guide the integration of
any additional forms of coding knowledge that are
identified.

The code sample is assumed to be representative
of other code. It is large, diverse and includes code
relating to a wide range of domains. It is also the
work of a large number of developers.

The current study only considers the direct
application of instructions. It would also have been
possible to include the indirect application of
instructions via variables. For example the code:

b = int(a)

c = abs(b)

involves the application of two instructions (abs and
int) using the intermediate variable b to effect the
data flow. While useful, this approach would have
added significant complexity to the parsing process.
Instead, the focus on direct application is treated as a
sampling exercise with the assumption that it is also
representative of indirect application.

The concept of instruction digrams together with
an associated frequency distribution is somewhat
reminiscent of probabilistic grammars [19], which
was an early line of investigation in the development
of Zoea. The earlier idea was to produce a target
language grammar with probabilities on the
productions that reflected how people write
software. The goal was to use this grammar to limit
the search space size. It proved difficult to create
such grammars manually so that approach was
ultimately shelved. Instruction digrams represent a
partial resurrection of that idea.

Zoea is transparent in the sense that it can
recount and explain every step of its reasoning in
producing a particular solution. Instruction digrams
are compatible with this behaviour. In combination
with instruction subsets it is feasible to explain the
basis for the selection of each instruction in a
solution.

The instruction digram approach does not
currently consider the argument position in the case
of instructions having multiple inputs. It is expected
that this would have some marginal benefit in terms
of search space size - albeit at the expense of a
slightly higher operational overhead.

Digram frequency is not currently exploited in
any sophisticated way. Rather it is simply used in
the binary identification of digrams that do or do not

exist in the code sample. Frequency could be used to
threshold on some value other than 1 to exclude
digrams that are rarely used. It could also be used to
prioritise the application of instructions - potentially
allowing many solutions to be identified sooner.

As with instruction subsets, this approach could
be useful in any area where a state space of code
solutions needs to be searched. It is also applicable
to any kind of production system including rules and
grammars – subject to the availability of a suitably
annotated corpus of solutions, such as parse trees.

Most high-level languages have similar sets of
instructions and it is reasonable to expect that this
approach is generally applicable to imperative
languages other than python. This would of course
need to be verified. Similarly, it is expected that the
approach would be useful in non-imperative
paradigms such as logic programming.

The search space sizes presented here are
pessimistic and represent upper bounds. The actual
performance will only be determined with
operational deployment of the approach in Zoea.
Deployment of instruction subsets in Zoea has been
deferred pending the results of the current study. It is
anticipated that both approaches will now be
deployed in the near future.

There are often many different ways of coding a
functionally identical program. This means that there
is a high probability that an alternative but
equivalent solution will be found before any
particular variant that might be anticipated. Zoea
treats the first (and thus the smallest) program it
finds that satisfies all of the test cases as a suitable
solution.

It is worth noting that even though there are
often thousands of instruction subsets of a given
size, most solutions are found in the first 10 subsets.
This is due to the significant overlap between
subsets. The majority of instruction subsets exist to
account for the long tail of increasingly rare
combinations of instructions. Programs that utilise
particularly uncommon combinations of instructions
can expect to require search involving many or most
of the subsets. In these cases the benefits of
instruction digrams are expected to be highly
significant. Long tail subsets tend to have much
smaller search spaces due to the fact that uncommon
instructions have many fewer digrams.

As far as the authors can tell the key ideas behind
this study are novel. Given the relative simplicity of
the approach it is surprising that similar work has
not been done before. Based on this study and the
previous one it would seem there is still much to be
learned from a deeper analysis of code.

We believe that the statistical analysis of
instruction digrams in open source code to be
ethical. Digrams cannot be considered to represent
anybody's intellectual property, as many of them are
not unique to any particular program. Also, the
process does not extract, store or use any executable
fragments of code. Other than in trivial cases, it
would be impossible to infer anything from the
digrams about the algorithms present in the code
sample. In any event we are only interested in the
digram frequency distribution across the complete
code sample.

5 CONCLUSIONS

We have described the use of instruction digrams as
a heuristic for search in inductive programming. We
analysed the instruction digram frequency
distribution within a large sample of open source
code. It was noted that many possible instruction
digrams are not represented in the code sample. The
distribution of instruction digrams that were present
is highly skewed with only a small number being
very common. We modelled the search space size
for instruction subsets of different sizes, constrained
by instruction digrams. It was found that instruction
digrams yield a further reduction in search space
size of up to several orders of magnitude. This will
allow a search graph to be explored more deeply
with the same time and resources, and means that
larger programs can be produced as a result. We
have discussed the results and identified some
opportunities for further work.

ACKNOWLEDGEMENTS

This work was supported entirely by Zoea Ltd. Zoea
is a trademark of Zoea Ltd. Any other trademarks
are the property of their respective owners.
Copyright © Zoea Ltd. 2023. All rights reserved.

REFERENCES

1. Brooks, F. P. (1995) "Chapter 17. 'No Silver
Bullet' Refined". The Mythical Man-Month
(Anniversary Ed.). Addison-Wesley. ISBN 978-
0-201-83595-3.

2. Rich, C., Waters, R.C. (1993). Yovits, M.C.
(ed.). Approaches to automatic programming.
Advances in Computers. Vol. 37. pp. 1–57.

3. Loaiza, F., Wheeler, D., Birdwell, J. (2019) A
Partial Survey on AI Technologies Applicable to
Automated Source Code Generation. Institute for
Defense Analyses (IDA), IDA NS D-10790.

4. Wermelinger, M. (2023) Using GitHub Copilot
to Solve Simple Programming Problems.
Proceedings of the 54th ACM Technical
Symposium on Computer Science Education V.
1 (SIGCSE 2023), March 15–18, 2023, Toronto,
ON, Canada. ACM, New York, USA.

5. Flener, P., Schmid, U. (2008) An introduction to
inductive programming. Artificial Intelligence
Review 29(1), 45-62. doi.org/ 10.1007/s10462-
009-9108-7.

6. Kitzelmann, E. (2010) Inductive programming:
A survey of program synthesis techniques.
Approaches and Applications of Inductive
Programming. Lecture Notes in Computer
Science 5812, 50–73. Berlin, Springer-Verlag.

7. Galwani, S., Hernandez-Orallo, J., Kitzelmann,
E., Muggleton, S. H., Schmid, U., Zorn, B.
(2015) Inductive Programming Meets the Real
World. Communications of the ACM 58(11),
90–99. doi.org/ 10.1145/2736282.

8. McDaid, E., McDaid, S., (2021) Knowledge-
Based Composable Inductive Programming.
International Conference on Innovative
Techniques and Applications of Artificial
Intelligence (SGAI-AI 2021) Artificial
Intelligence XXXVIII. Cambridge UK. Springer
LNCS 13101. ISBN 978-3-030-91099-0.

9. McDaid, E., McDaid, S., (2019) Zoea -
Composable Inductive Programming Without
Limits. arXiv:1911.08286 [cs.PL].

10. McDaid, E., McDaid, S., (2020) A Visual
Language for Composable Inductive
Programming. arXiv:2009.08700 [cs.PL].

11. McDaid, E., McDaid, S., (2021) The
Composability of Intermediate Values in
Composable Inductive Programming.
arXiv:2107.01621 [cs.PL].

12. McDaid, E., McDaid, S., (2022) Architecture and
Knowledge Representation for Composable
Inductive Programming. arXiv.2212.12320
[cs.PL].

13. McDaid, E., McDaid, S., (2023) Shrinking the
Inductive Programming Search Space with
Instruction Subsets. Proceedings of the 15th
International Conference on Agents and

Artificial Intelligence (ICAART 2023). Lisbon,
Portugal. SciTePress ISBN 978-989-758-623-1.

14. Fenstermacher, K. D. (2005) The Tyranny of
Tacit Knowledge: What Artificial Intelligence
Tells us About Knowledge Representation.
Proceedings of the 38th Annual Hawaii
International Conference on System Sciences,
Big Island, HI, USA, 2005, pp. 243a-243a, doi:
10.1109/HICSS.2005.620.

15. Martí, R., Pardalos, P. M., Resende, M. G. C.
(2018) Handbook of Heuristics. Springer, Cham,
Switzerland. ISBN 978-3-319-07123-7.

16. GitHub. https://github.com Retrieved: 19 May
2023.

17. Python. https://www.python.org Retrieved: 19
May 2023.

18. ast – Abstract Syntax Trees.
https://docs.python.org/3/library/ast.html
Retrieved: 19 May 2023.

19. Eddy S., Durbin R. (1994) "RNA sequence
analysis using covariance models". Nucleic
Acids Research. 22 (11): 2079–2088.
doi:10.1093/nar/22.11.2079.

