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Abstract: Overlapping instruction subsets derived from human originated code have previously been shown to 
dramatically shrink the inductive programming search space, often by many orders of magnitude. Here we 
extend the instruction subset approach to consider direct instruction-instruction applications (or instruction 
digrams) as an additional search heuristic for inductive programming. In this study we analyse the 
frequency distribution of instruction digrams in a large sample of open source code. This indicates that the 
instruction digram distribution is highly skewed with over 93% of possible instruction digrams not 
represnted in the code sample. We demonstrate that instruction digrams can be used to constrain instruction 
selection during search, further reducing size of the the search space, in some cases by several orders of 
magnitude. This significantly increases the size of programs that can be generated using search based 
inductive programming techniques. We discuss the results and provide some suggestions for further work. 
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1 INTRODUCTION 

The production of software remains a complex, 
specialist, labour intensive and expensive activity. 
This is despite many (mostly incremental) advances 
in programming language design and software 
development methods [1]. In this context the idea of 
using of AI to simplify or even automate coding is 
appealing and much work has been directed to this 
end [2,3]. 

Recently, there has been significant interest and 
progress in the application of deep learning and 
large language models to the production of code [4]. 
While promising, these approaches are not directly 
relevant to the work described in this paper and will 
not be discussed here in further detail. Instead, our 
focus is inductive programming - a field that has 
been active over a long period [5]. 

The goal of inductive programming is to 
transform a specification - such as a set of test cases 
- directly into software. Within this domain a variety 
of approaches have been developed [6] but 
fundamentally these are all limited by the size of the 
search space [7]. 
 

Most high-level programming languages include 
around 200 instructions, comprising operators as 
well as core and standard library functions. In 
simplistic terms this dictates the branching factor of 
the inductive programming search space - which 
grows exponentially with increasing target program 
size. 

Aside from trivial cases it is not possible to 
determine the output of a given source code program 
without executing it. As a result, all inductive 
programming approaches rely on some form of 
generate and test. The huge size of this search space 
has meant that until recently inductive programming 
was limited to the production of small programs [7]. 

Zoea is an inductive programming system that 
has been developed over the last few years [8]. To 
some extent Zoea sidesteps the inductive 
programming search problem by avoiding search 
where possible and through the paradigm of 
composable inductive programming (CIP) [9]. CIP 
is an iterative and incremental process that involves 
the composition of small program units, which are 
generated using inductive programming. This is 
facilitated by a visual programming language called 
Zoea Visual [10]. In principle CIP allows inductive 



programming to be used to incrementally produce 
software of any size [11]. However, the size of 
individual program units is still limited in some 
cases by search. 

Zoea employs a blackboard architecture that 
supports clustered deployment [12]. Zoea 
knowledge sources also support partitioning of the 
search space using subsets of the instruction set. 
Recently, a study was conducted to produce new 
instruction subsets capable of supporting hundreds 
of cores [13]. This involved the creation of 
thousands of small overlapping instruction subsets. 
These subsets were derived from a large sample of 
open source code. Subsets are created by clustering 
the program unit instruction subsets from the code 
sample. It was found that the derived instruction 
subsets generalised quickly to cover unseen code. 
They also effectively reduce the overall size of the 
search space - often by many orders of magnitude. 

Instruction subsets shrink the search space due to 
the skewed frequency distribution of individual 
instructions and the even more skewed distribution 
of instruction co-occurrence within program units. 
Human developers do not use all instructions or 
combinations of instructions with equal probability 
and the skewed patterns of instruction co-occurrence 
in human code persist in the derived subsets. As 
such, instruction subsets represent a form of low-
level tacit programming knowledge [14]. For 
inductive programming they also represent a useful 
and general heuristic [15]. 

The previous study noted the highly skewed 
distribution of instruction pair co-occurrence within 
program units. This raises the possibility that the 
frequency distribution of direct instruction 
application might represent another useful heuristic. 

In Zoea, candidate solution programs are 
assembled by combining instructions to form a 
functional program that matches the test cases. 
Factors such as the data type compatibility of 
instruction inputs and outputs already constrain 
which instructions can be applied in many cases. 
Also, we know from our work with instruction 
subsets that many pairs of individual instructions are 
never used together by human developers within the 
same program unit - or are very rarely used. If we 
understood how human developers combine 
individual instructions to form programs then we 
could use this information to inform our choice of 
which instruction to apply next for any partially 
constructed solution candidate. 

An instruction digram is simply an ordered pair 
of instruction identifiers that correspond to the direct 
application of one instruction to the return value of 

another instruction. The set of all possible 
instruction digrams can easily be enumerated from 
any set of instructions. For example, if the set of 
instructions is { a … z } then the set of all possible 
instruction digrams is { [a,a], [a,b] … [z,y], [z,z] }. 
Each possible instruction digram has a frequency 
distribution across all of the programs in any code 
sample – which may be zero. 

If human developers use only a subset of all 
possible instruction digrams, then we can easily 
identify that subset and use it as an additional search 
constraint. As with instruction subsets, instruction 
digrams can be considered a form of heuristic. 
Instruction digrams could be used as a heuristic in 
their own right but the intention is to combine their 
use with that of instruction subsets to yield a larger 
reduction in search space size. 

The key question addressed here is: does the use 
of instruction digrams reduce the branching factor 
and thus the size of the inductive programming 
search space, and if so by how much? 
 
2 APPROACH 

This study reused the same data set that was used for 
the creation of instruction subsets [13]. This consists 
of a snapshot of the largest 1000 repositories on 
GitHub [16] that was taken on 13 May 2022. Only 
python [17] code is used and the data set includes 
approximately 14.75 million lines of code in that 
language. Python is a popular language with an 
instruction set that is typical of many similar 
languages. It is also relatively easy to parse. 

Identifying instruction digrams is more involved 
than the production of instruction subsets as it 
requires parsing rather than tokenisation. The python 
AST (abstract syntax tree) module [18] would be a 
natural choice for this task however it is not 
backwards compatible and as such is unable to 
process different python versions at the same time. 
The code sample contains python source code in a 
variety of versions. 

Instead, a simple expression parser for python 
was constructed. Pre-processing with regular 
expressions filtered out comments and any code that 
did not contain multiple instructions. Also, literal 
strings were replaced with variable identifiers in 
order to prevent their contents from interfering with 
the parsing process. This resulted in a series of code 
fragments containing instructions that were then 
parsed individually. 

A separate parse tree was produced for each code 
fragment that corresponded to the application of two 
or more instructions. The parse tree includes a node 



for each instruction (operator or function) together 
with links for each input or argument. Such a parse 
tree can include any number of instruction digrams - 
corresponding to any two directly connected nodes. 
Once constructed, each node in the parse tree was 
visited in turn, to identify all linked pairs of 
instruction nodes. The instruction digram patterns 
that were identified include the following examples: 
• function( function() ) 
• function().function() 
• <expression> <operator> function() 
• function() <operator> <expression> 
• function( <expression> <operator> 

<expression> ) 
• <expression> <operator> <expression> 

<operator> <expression> 

An ordered pair of instruction identifiers [F1, F2] 
uniquely identifies each digram, where instruction 
F2 uses the output value of instruction F1 as an 
input. In temporal terms, F1 is executed before F2. 
Any occurrence of [F2, F1] is treated as a different 
digram.  

For each source code file, the number of 
occurrences of each distinct digram was recorded. 
Once all files had been processed these numbers 
were totalled to produce counts for each digram 
across all files in a given repo. A similar roll up 
produced totals for each digram across all repos in 
the code sample. 

A high level summary of the process for 
identifying instruction digrams is as follows: 
1. The zip file for each repo was unpacked into a 

temporary folder; 
2. All non-python code and data was deleted; 
3. Each python source file was pre-processed and 

split into expressions; 
4. Each expression was parsed to produce an AST; 
5. Each AST was walked to identify every digram; 
6. Counts for each unique digram for each file were 

produced; 
7. Total instruction digram counts across all repos 

were produced. 

A skewed digram frequency distribution would be 
required for digrams to represent a useful search 
heuristic. Ideally, this would include a significant 
number of digrams that are rarely or never used.  

We used the set of digrams identified in the code 
sample to produce new search space size estimates 
and compared these with the results of the previous 
study. The objective here was to determine whether 
we obtained another significant reduction in the size 
of the search space using instruction digrams. 

Estimation of the search space size was 
accomplished by using the digrams to determine 
which members of the instruction subset could be 
applied at each level in a search tree, up to some 
specified maximum depth. In doing this we only 
considered digrams where both instructions were 
present in each instruction subset. 

At the first level of the search tree it was 
assumed that all subset instructions could be applied. 
At each subsequent level an instruction F2 could 
only be applied if a digram [F1, F2] existed, such 
that instruction F1 was present on a previous level 
and instruction F2 was a member of the current 
instruction subset. The size of the search space was 
measured as the total number of instructions present 
on all levels.  
 
3 RESULTS 

Figure 1 shows the instruction digram frequency 
distribution across the entire code sample. It can be 
seen that a small number of digrams occur 
frequently while most digrams are much less 
common. Over 50% of digrams occur only once and 
over 90% occur 10 or fewer times.  
 

 
Figure 1: Instruction digram frequency distribution. 

The digrams that do occur represent just 6.25% of 
all possible digrams. This means that 93.75% of 
possible digrams are not represented in the code 
sample at all. Figure 2 provides a visualisation of 
digram frequency (or rather scarcity) as a 3-d chart. 
The x and y axes both correspond to individual 
instructions and each x-y point corresponds to an 
ordered pair of instructions - a potential digram. The 
colour of each point (z-axis) represents digram 
frequency using a log scale to enhance the detail. It 
is clear from Figure 2 that many digrams are not 
used and most of those that are used are infrequent.  
 



 
Figure 2: Instruction digram frequency visualisation. 

Some of the digrams that do not occur are absent 
due to data type constraints. For example, an 
instruction that returns a string cannot be used as an 
input for a second instruction that expects a number. 
Another reason why some digrams might be missing 
is due to redundancy. For example, there is no point 
in applying one instruction to reverse a list and then 
another instruction to sort the list. In this scenario 
the effect of reverse instruction is completely 
undone by the sort. The same is true of pairs of 
instructions that have opposite effects such as 
conversion to uppercase and lowercase, or  reverse-
reverse. Functional equivalence of pairs of 
instructions is another possibility. 

However, these explanations do not account for 
many of the missing potential digrams. Other 
possible explanations include preference, different 
forms of bias or the applicability of particular 
instructions to different kinds of problems. 
Regardless of the reason it is clear that the 
instruction digram distribution holds across a large 
and diverse code sample. As a result we can 
potentially take advantage of it to constrain search. 

Instruction digrams can be applied as constraints 
to instruction subsets. This effectively reduces the 
number of ways in which instructions from the 
instruction subset can be combined. 

Instruction subsets exist with different maximum 
sizes. The maximum subset size dictates an upper 
limit in terms of the number of distinct instructions 
that can appear in a solution. Note that this does not 
place a limit in the total number of instructions since 
the same instruction can, and often is, repeated 
within a given program unit.  

Placing a limit on the number of instructions is 
useful given that 90% of program units contain 10 or 
fewer distinct instructions while only 2% of program 
units contain more than 20 instructions. Having 
smaller instruction subsets greatly reduces the 

overall size of the search space so if we search using 
smaller subsets first then we will find most solutions 
and do so more quickly. If this proves fruitless and 
we are prepared to expend the additional effort then 
we can try progressively larger instruction subsets 
until a solution is found. 

Instruction digrams can reduce the size of the 
search space for an instruction subset since it allows 
us to ignore many instruction applications that we 
might otherwise have to consider. If we accept that 
we will only allow instruction applications that are 
defined as instruction digrams and we know that 
only a small proportion of possible instruction 
digrams exist then we can expect to create many 
fewer instruction applications.  

We applied the instruction digrams as constraints 
to the instruction subsets that were produced in the 
previous study and measured the resulting search 
space size using the approach described earlier. 
Figure 3 shows the search space sizes for instruction 
subsets of size 10 - with and without instruction 
digrams. This chart shows data flow depth as the x-
axis. This corresponds to the maximum depth of the 
search graph as measured in instructions from the 
root. The y-axis corresponds to search space size as 
measured in search space nodes and uses a log scale.  

It can be seen that the size of the search space 
using all instructions (red '+' line) grows rapidly. 
The search space size quickly makes exhaustive 
search infeasible, whatever approach is used. 
Instruction subsets (green 'x' line) provide a 
significant reduction in search space size, by only 
using combinations of instructions that people use 
when writing software. Instruction subsets with 
instruction digrams (blue dots) can be seen to give a 
further significant reduction in search space size. 
There are around 6000 instruction subsets of size 10 
so these have been jittered to improve visibility. In 
this case the jitter adds a small random value to the 
x-axis that results in the data points being distributed 
around the relevant line. This random value has no 
significance from a data perspective. 

The search space sizes for instruction subsets 
plus digrams assume a wide range of values. This is 
to be expected since the subsets contain different 
instructions and these will correspond to different 
sets of digrams. Some of the instructions are 
common while many are rare. Rare instructions are 
expected to have fewer corresponding digrams. An 
instruction subset with few digrams will have a 
significantly smaller search space than one with 
many digrams. 



 
Figure 3: Search space sizes for subset size 10. 

Above data flow depth of 5, the worst case (largest) 
search space size for digrams is at least one order of 
magnitude smaller than for instruction subsets alone. 
At greater data flow depths the size of the reduction 
continues to increase. We can see by tracing 
horizontally from the (green) subset line to the 
highest (blue) digram point that for the same 
resources instruction digrams allow deeper 
exploration of the search graph by between 1 and 4 
levels. 

Figure 4 shows a similar chart for instruction 
subset size 20.  Here the line for all instructions is 
identical. Larger subsets naturally have a larger 
corresponding search space. As a result the 
instruction digram sizes are also larger. However, 
there is a much greater reduction in search space 
size. Taken together, subset sizes 10 and 20 account 
for 98% of the program units in the code sample.  
 

 
Figure 4: Search space sizes for subset size 20. 

Figure 5 shows the search space sizes for subset size 
50. This is included mainly to show the continuation 
of the trend. The reduction in search space size 
continues to increase. Also, it is clearer that the 
spread of the digram search space sizes is becoming 
narrower. 

 
 Figure 5: Search space sizes for subset size 50. 

The overall distribution of search space sizes is not 
easily discernible from Figures 3-5. Figure 6 shows 
the search space sizes for instruction subsets plus 
digrams. The lines correspond to all of the blue dots 
in the previous three figures. These are plotted for 
different subset sizes and the individual subsets have 
been sorted in order of ascending search space size 
along the x-axis. 

It is clear that there are different numbers of 
subsets for different subset sizes. The kink at the end 
of each line shows that relatively few subsets have 
significantly larger search space sizes than would be 
expected from the main sequence trend. These 
correspond to the highest search space sizes for data 
flow depth 20 in Figures 3-5 (blue dots). It should be 
remembered that even the largest search space sizes 
represent a significant reduction. The key take-away 
is that the majority of subsets have search space 
sizes that are much smaller than the maximum. 
 

 
Figure 6: Reduced instruction subset search space sizes. 

The reduction in search space size provided by 
instruction digrams is less dramatic than that for 
instruction subsets but it is still significant. 
Particularly at subset size 10, many of the individual 
search space sizes for subsets plus digrams are 5 or 



more orders of magnitude smaller that for subsets 
alone. 

In Zoea different subsets are processed by a pool 
of worker nodes. The above results mean that all of 
the jobs would complete more quickly and perhaps 
half of the jobs required to cover the entire search 
space would also complete in a tiny fraction of the 
time required otherwise. 
 
4 DISCUSSION 

As with instruction subsets, instruction digrams can 
be viewed as another type of low level, tacit 
software development knowledge. In the same way, 
the identification and exploitation of instruction 
digrams represent a form of knowledge elicitation. 
Other similar forms of low level programming 
knowledge may also exist and if so should be 
investigated. 

The whole approach is predicated on the 
assumption that there is merit in mimicking the way 
in which people develop software. In the absence of 
alternatives this is at least an expedient strategy. 
From another perspective, the size of the inductive 
programming search space has been a major and 
pernicious obstacle for decades. Thus any approach 
that significantly reduces this problem is of interest. 
However, there remains a risk that by excluding the 
consideration of many combinations of instructions 
we might overlook some simpler and innovative 
solutions to problems. 

It is not known why the instruction digram 
frequency distribution in human code is skewed in 
the way that it is. This is no doubt somehow 
influenced by the skewed instruction distribution but 
why are some digrams common while many possible 
digrams are never used? Human patterns of code use 
may not be optimal and alternative digram 
distributions may exist that are better in some ways. 

The instruction digram approach does not 
consider context. Larger structures such as trigrams 
or n-grams might be worth investigating. 
Alternatively, context could be applied extrinsically. 
Context would necessarily involve instructions that 
have already been hypothesised as part of the 
candidate solution, at lower levels in the search tree 
and on data flow paths that lead to the current node. 
A simplistic approach might utilise different 
instruction subsets and different sets of digrams for 
various domains. Indeed, it is possible that this 
occurs already to some extent in the case of subsets, 
as a result of clustering. Instructions that co-occur in 
particular kinds of code are likely to end up in the 
same subsets. 

Integration of instruction subsets and instruction 
digrams is remarkably easy. These elements 
represent two different forms of knowledge:  
1. What instructions to use together and  
2.  How to combine instructions to form programs. 

Perhaps this experience can guide the integration of 
any additional forms of coding knowledge that are 
identified. 

The code sample is assumed to be representative 
of other code. It is large, diverse and includes code 
relating to a wide range of domains. It is also the 
work of a large number of developers. 

The current study only considers the direct 
application of instructions. It would also have been 
possible to include the indirect application of 
instructions via variables. For example the code: 

b = int(a) 

c = abs(b) 

involves the application of two instructions (abs and 
int) using the intermediate variable b to effect the 
data flow. While useful, this approach would have 
added significant complexity to the parsing process. 
Instead, the focus on direct application is treated as a 
sampling exercise with the assumption that it is also 
representative of indirect application. 

The concept of instruction digrams together with 
an associated frequency distribution is somewhat 
reminiscent of probabilistic grammars [19], which 
was an early line of investigation in the development 
of Zoea. The earlier idea was to produce a target 
language grammar with probabilities on the 
productions that reflected how people write 
software. The goal was to use this grammar to limit 
the search space size. It proved difficult to create 
such grammars manually so that approach was 
ultimately shelved. Instruction digrams represent a 
partial resurrection of that idea. 

Zoea is transparent in the sense that it can 
recount and explain every step of its reasoning in 
producing a particular solution. Instruction digrams 
are compatible with this behaviour. In combination 
with instruction subsets it is feasible to explain the 
basis for the selection of each instruction in a 
solution. 

The instruction digram approach does not 
currently consider the argument position in the case 
of instructions having multiple inputs. It is expected 
that this would have some marginal benefit in terms 
of search space size - albeit at the expense of a 
slightly higher operational overhead.  

Digram frequency is not currently exploited in 
any sophisticated way. Rather it is simply used in 
the binary identification of digrams that do or do not 



exist in the code sample. Frequency could be used to 
threshold on some value other than 1 to exclude 
digrams that are rarely used. It could also be used to 
prioritise the application of instructions - potentially 
allowing many solutions to be identified sooner. 

As with instruction subsets, this approach could 
be useful in any area where a state space of code 
solutions needs to be searched. It is also applicable 
to any kind of production system including rules and 
grammars – subject to the availability of a suitably 
annotated corpus of solutions, such as parse trees. 

Most high-level languages have similar sets of 
instructions and it is reasonable to expect that this 
approach is generally applicable to imperative 
languages other than python. This would of course 
need to be verified. Similarly, it is expected that the 
approach would be useful in non-imperative 
paradigms such as logic programming. 

The search space sizes presented here are 
pessimistic and represent upper bounds. The actual 
performance will only be determined with 
operational deployment of the approach in Zoea. 
Deployment of instruction subsets in Zoea has been 
deferred pending the results of the current study. It is 
anticipated that both approaches will now be 
deployed in the near future. 

There are often many different ways of coding a 
functionally identical program. This means that there 
is a high probability that an alternative but 
equivalent solution will be found before any 
particular variant that might be anticipated. Zoea 
treats the first (and thus the smallest) program it 
finds that satisfies all of the test cases as a suitable 
solution. 

It is worth noting that even though there are 
often thousands of instruction subsets of a given 
size, most solutions are found in the first 10 subsets. 
This is due to the significant overlap between 
subsets. The majority of instruction subsets exist to 
account for the long tail of increasingly rare 
combinations of instructions. Programs that utilise 
particularly uncommon combinations of instructions 
can expect to require search involving many or most 
of the subsets. In these cases the benefits of 
instruction digrams are expected to be highly 
significant. Long tail subsets tend to have much 
smaller search spaces due to the fact that uncommon 
instructions have many fewer digrams. 

As far as the authors can tell the key ideas behind 
this study are novel. Given the relative simplicity of 
the approach it is surprising that similar work has 
not been done before. Based on this study and the 
previous one it would seem there is still much to be 
learned from a deeper analysis of code. 

We believe that the statistical analysis of 
instruction digrams in open source code to be 
ethical. Digrams cannot be considered to represent 
anybody's intellectual property, as many of them are 
not unique to any particular program. Also, the 
process does not extract, store or use any executable 
fragments of code. Other than in trivial cases, it 
would be impossible to infer anything from the 
digrams about the algorithms present in the code 
sample. In any event we are only interested in the 
digram frequency distribution across the complete 
code sample. 
 
5 CONCLUSIONS 

We have described the use of instruction digrams as 
a heuristic for search in inductive programming. We 
analysed the instruction digram frequency 
distribution within a large sample of open source 
code. It was noted that many possible instruction 
digrams are not represented in the code sample. The 
distribution of instruction digrams that were present 
is highly skewed with only a small number being 
very common. We modelled the search space size 
for instruction subsets of different sizes, constrained 
by instruction digrams. It was found that instruction 
digrams yield a further reduction in search space 
size of up to several orders of magnitude. This will 
allow a search graph to be explored more deeply 
with the same time and resources, and means that 
larger programs can be produced as a result. We 
have discussed the results and identified some 
opportunities for further work. 
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