
Shrinking the Inductive Programming Search Space with Instruction
Subsets

Edward Mc Daid1 a and Sarah Mc Daid1 b
1Zoea Ltd., 20-22 Wenlock Road, London, N1 7GU, UK

{edward.mcdaid, sarah.mcdaid}@zoea.co.uk

Keywords: Inductive Programming, State Space Search, Knowledge Representation.

Abstract: Inductive programming frequently relies on some form of search in order to identify candidate solutions.
However, the size of the search space limits the use of inductive programming to the production of
relatively small programs. If we could somehow correctly predict the subset of instructions required for a
given problem then inductive programming would be more tractable. We will show that this can be
achieved in a high percentage of cases. This paper presents a novel model of programming language
instruction co-occurrence that was built to support search space partitioning in the Zoea distributed
inductive programming system. This consists of a collection of intersecting instruction subsets derived from
a large sample of open source code. Using the approach different parts of the search space can be explored
in parallel. The number of subsets required does not grow linearly with the quantity of code used to produce
them and a manageable number of subsets is sufficient to cover a high percentage of unseen code. This
approach also significantly reduces the overall size of the search space - often by many orders of magnitude.

a https://orcid.org/0000-0001-8684-0868
b https://orcid.org/0000-0001-7643-6722

1 INTRODUCTION

The use of AI to assist in or even to automate the
generation of computer software is an active area of
research (e.g. Xu et. al. 2022, Nguyen and Nadi
2022). Many current systems are based on deep
learning and recent work includes the use of large
language models such as GPT-3 (Brown et. al.
2020). These involve training on large quantities of
code although this can also raise concerns about
transparency and ethics (Lemley and Casey 2021).

Work also continues on other approaches that are
not traditionally associated with training (Cropper,
Dumancic and Muggleton 2020, Petke et. al. 2018).
Inductive programing aims to generate code directly
from some form of specification – often in the form
of input-output examples or test cases (Flener and
Schmid 2008). Various techniques for inductive
programming have been developed but
fundamentally many of these rely on some form of
search (Kitzelmann 2010).

Other than for trivial cases it is not possible to
determine the outcome of a computation directly
from source code without also executing the
program. As a result some form of generate and test
approach is unavoidable.

In computer programs a large number of
language elements can be combined in many ways
to quickly produce enormous numbers of candidate
solutions. The size of the search space has limited
inductive programming systems to the production of
relatively small programs (Galwani et. al. 2015).

A major source of combinatorial growth in
inductive programming is the number of
instructions, comprising core language and standard
library functions, and operators. This number varies
by programming language but is frequently around
200 and can be more. It has been suggested that if
we could somehow correctly predict the subset of
instructions that were actually required for a given
program then the problem of inductive programming
would be easier and larger programs could be
produced with given resources (McDaid 2019).

One way to produce slightly larger programs in a
given time period is to distribute the work across
many computers. In order to do this we need to
partition the search space. Partitioning on the
instruction set is attractive as most programs use a
relatively small subset of instructions. In which case
how do we define the subsets we will use?

This paper presents the results of a study that
was carried out to inform the definition of
instruction subsets for the Zoea inductive
programming system (McDaid 2021). The initial

sections in this paper describe our approach to the
production and evaluation of instruction subsets. We
then go on to discuss some significant findings that
only became apparent once this work had been
completed.

2 PRELIMINARIES

Let C be a source code program in a high level
imperative programming language L. C is composed
of one or more program units U - corresponding to
procedures, functions or methods. L provides a set of
instructions IL comprising built in operators, core
and standard library functions. Each U contains a set
of instructions IU where IU ⊆ IL ∧ IU ≠ Ø.

Given a collection of programs SP1 we can
enumerate the corresponding family of program unit
instruction subsets SIU where SIU ∈ P(IL) ∧ SIU
≠ Ø. (Here P refers to the power set.)

IU is said to cover U if IU is the instruction
subset for U or IU is the instruction subset for a
different U and a superset of the IU for U. Each IU
trivially covers the corresponding U. We can also
say that SIU covers SP1. Coverage for a set of
programs is quantified as the number of covered
program units divided by the total number of
program units expressed as a percentage.

Any IU that is a subset of another IU can be
removed from SIU without affecting the overall
coverage of SIU wrt SP1. Two or more IUs can be
combined to form a new derived instruction subset
ID. ID provides the same aggregate coverage as its
component IUs wrt SP1.

SID is a family of instruction subsets comprising
all IUs (that have not been removed or merged)
union all IDs. SID provides the same coverage as the
original SIU wrt SP1. We can enforce an upper limit
M1 on |IU| and an upper limit M2 on |ID| during the
creation of SID. Any U where |IU| > M1 is silently
ignored. M2 constrains which subsets of SIU (IUs)
can be combined to form IDs.

Any number of IDs can be created providing
their respective component IUs are also removed
and |ID| <= M2. Once created SID can then be
evaluated in terms of the coverage it provides wrt a
different set of programs SP2.

3 APPROACH

3.1 Objectives

The primary goal of this work was to define a set of
instruction subsets to support efficient clustering in
the Zoea inductive programming system (McDaid
2021). Zoea employs a distributed blackboard
architecture comprising many knowledge sources
that operate in parallel. Knowledge source
activations can also be partitioned according to
instruction subsets.

Currently Zoea can efficiently utilise up to
around 100 cores and it can create millions of
activations in solving a problem. Efficiently utilising
larger numbers of cores requires more fine-grained
partitioning of the instruction set. This will enable
Zoea to better leverage cloud-based deployment.

The number of subsets required to provide
sufficient coverage for a wide variety of programs
was unknown in advance. Based on experience in
tuning the current system hundreds to thousands of
subsets would likely result in acceptable
performance.

This work evolved from and ultimately
superseded an earlier effort to define random
subsets, which is not described here in any detail.
The strategy of deriving subsets from existing code
was seen as a potential way to make subsets more
representative of human originated software. It was
also apparent that any such subsets would need to
intersect with one another to some extent.

The target size of the instruction subsets is an
important consideration. Smaller subsets make it
possible to find programs with fewer instructions in
a search space in less time. However, we also need
to be able to produce programs with larger numbers
of instructions. This suggests the use of multiple sets
of instruction subsets of different sizes. In this
scheme the subset size defines an upper limit on the
number of unique instructions but not the size of the
program that can be found. Operationally these can
be used to either try to find programs with fewer
unique instructions first or at the same time. The
target subset sizes evaluated were 10 to 100 in
increments of 10.

Input to the subset creation process is a set of
non-empty program unit instruction subsets of
various sizes. These are presented in the order in
which they occur in the source code. No other
associated metadata is provided. Often many of the
input subsets are duplicates.

Depending on how much code is used there can
be many program subsets and we would like to have

a much smaller number of derived subsets. In broad
terms this can be seen as a form of clustering. To
enable program subsets to be clustered the derived
subsets are allowed to be somewhat larger by a
configurable amount. In producing derived
instruction subsets of a given size we simply ignore
any program subsets that are larger.

For a given derived subset size every program
unit subset of that size or smaller will itself be a
subset of at least one derived subset. This means that
each of the largest program unit subsets will
effectively form the core of one derived subset. The
pigeonhole principle implies that there will be a
minimum number of derived subsets required simply
to accommodate the larger program subsets within
them. This also suggests that we should process the
larger program subsets first. If we process the input
subsets in descending size order then at some stage
the space remaining in the already partially
populated derived subsets will be sufficient for
smaller program subsets to be merged.

The performance of a set of derived instruction
subsets can be measured by counting the number of
unseen programs with an equal or smaller number of
unique instructions that they cover. By unseen we
simply mean programs that were not used for the
production of the subsets. A program is covered by a
set of subsets if all of its instructions are present in at
least one of the subsets. This implies that any
exhaustive search of the spaces defined by the
subsets will eventually locate a covered program.

In summary, the key objectives were: to create
sets of instruction subsets for different maximum
subset sizes; to understand how many subsets are
required for different subset maximum sizes; and
determine the coverage for unseen code provided by
the subsets created.

3.2 Method

Instruction subsets need to be representative of real
world software, which implies they should also be
derived from the same. A large quantity of code is
required to ensure sufficient variety and ideally it
should be the product of many different developers
from a variety of contexts. The code also needs to be
legally and ethically available.

GitHub (Microsoft 2022) was identified as a
suitable source of software and it has been used in
the past for similar analyses of code (Ray et. al.
2014). We used the largest 1,000 repositories on
GitHub (as of 13 May 2022) and limited our analysis
to Python (Martelli, Ravenscroft and Holden, 2017)
programs only. Python was selected on the basis that

it is a fairly popular language and the available
instructions are representative of similar languages.

In each case the complete repository was
downloaded as a zip file, extracted and non-Python
files were discarded. Each Python program was split
into program units (classes, methods, functions and
mains) and tokenised using simple custom code
based on regular expressions. Two of the
repositories were excluded due to parsing errors.
From the identified tokens the occurrences of each
of a specific set of instructions were counted.
Instructions that have no meaning in Zoea, such as
those relating to variable assignment, were either
mapped to an equivalent instruction if possible or
else excluded. (E.g. '+=' is mapped to '+' while '=' is
excluded.) No code or other information was used in
any other way. The output of this step was a flat list
of unique instruction names in alphabetical order for
each program unit.

The analysis included 71,972 Python files
containing 15,749,416 lines of code or 580,476,516
characters. From this 886,421 program units were
identified. For each program unit the subset of
instructions it contains was recorded. Many of the
instruction subsets so identified were duplicates and
when these were removed 345,120 unique
instruction subsets remained.

During processing the instruction subsets were
filtered to remove any that are proper subsets of
another instruction subset. That is, if all of the
instructions of subset A also occur in subset B then
subset A is deleted. This process was repeated until
no further subsets were deleted. This left 33,823
instruction subsets. These varied in size between 1
and 74 instructions (median: 3, standard deviation:
3.67). Many of the unique instruction subsets were
very similar to one another, differing by only one or
two instructions.

Figure 1: Overview of Subset Creation.

3.3 Clustering Algorithm

Figure 1 gives a conceptual overview of the subset
creation process. Producing derived instruction
subsets (IDs) from program unit instruction subsets
(IUs) is essentially a clustering problem. A number
of different clustering algorithms were developed
and evaluated. The end result incorporates the two
most successful of these together with some pre- and
post-processing. Pseudo-code for the software is
shown in Algorithm 1.

When a set of derived instruction subsets is
created this is always with respect to a specified
maximum subset size. This size limit also
determines the target number of derived subsets as
described in more detail later in this section.

delete any duplicate IUs
amplify IUs (see section 3.4)
delete IUs that are subsets of IU’
foreach IU do
 find Instr, Subsets where
 Instr is not a subset of IU and
 length(IU ∪ Instr) is maximum
 Let IU = IU ∪ { Instr }
 delete all IUs in Subsets
end foreach
create NumIDs empty IDs
foreach IU do
 if exists(empty ID) then
 Let ID = IU
 else
 find IDs with max(| ID ∩ IU |)
 choose ID with min(| ID |)
 Let ID = ID ∪ IU
 end if
end foreach
merge IDs where size <= MaxIdSize
return set of IDs

Algorithm 1: Clustering algorithm.

Input subsets are processed in decreasing order
of size. In order to improve performance all
instruction subsets are kept internally sorted at all
times.

Pre-processing involves de-duplication,
amplification and subset removal. Amplification is
described in the next section. Many input subsets are
duplicates of which set one is retained. Any input
subset that is wholly contained within another input
subset is also removed.

The first clustering stage attempts to subsume the
largest number of near subsets by adding a single
additional instruction to each IU in turn. In choosing
which instruction to add the algorithm determines
how many other IUs will become subsets of the

current IU if that instruction is added. The
instruction that results in the removal of the greatest
number of other IUs is selected.

The second clustering stage tries to merge each
IU with the ID with which it has the greatest
intersection. This involves pre-creating a specified
number of empty IDs and then either populating the
empty IDs or else merging the IU into the ID with
both the largest intersection and the most remaining
capacity. If all IDs are at their maximum capacity
then additional empty IDs are created.

Post-processing involves merging any remaining
small IUs and non-full IDs together. This is driven
entirely by subset size and ignores similarity.

As noted already, the algorithm allows for the
specification of both a maximum subset size and a
target number of subsets. However, the number of
subsets requested is not necessarily honoured if this
proves to be impossible, in which case a minimal
number of additional subsets are created. For each
subset size the approximate number of subsets
required is determined in advance by code that
iterates over possible values in ascending order. The
number of subsets required is detected when the
number of subsets created equals the number of
subsets requested. Given this requires considerable
time the process has only been done in increments so
the figures obtained are approximate, within the size
of the increment.

3.4 Amplification

Initially, the process of merging subsets was simply
seen as a way to reduce the number of derived
subsets and to help standardize their sizes. However,
it was observed that coverage against unseen code
improved significantly after merging. This is partly
because larger subsets provide better coverage than
do small ones since they have a greater number of
subsets. Also, combining different instruction
subsets from unrelated code has similarities to
software composition. Merging input subsets
introduces additional intra-subset instruction co-
occurrence variety that would not otherwise be
present. It is interesting to note that adding an
equivalent number of random instructions rather
than merging does not give any detectable benefit.

In order to take greater advantage of this
phenomenon an amplification step was introduced
where smaller input subsets are merged with one
another before clustering to create additional
artificial program subsets. This was not explored
systematically but the benefits do not seem to
continue to accrue beyond a 50% increase in the

number of subsets. Further work in this area may be
fruitful.

4 RESULTS

4.1 Input Data

Figure 2 shows the size frequency distribution of the
program unit instruction subsets. This contains both
the numbers of subsets of different sizes and the
cumulative percentage of the number of program
units for each subset size. From this it can be seen
that around 90% of program units have instruction
subsets containing 10 or fewer unique instructions.
Also, only around 2% of program unit subsets
contain 20 or more instructions.

Figure 2: Program Unit Instruction Subset Size Frequency
Distribution.

Figure 3 gives the frequency distribution for
instructions across all of the code used. Here
instructions are ranked in order of descending
frequency. This shows that a small number of
instructions are used very frequently and that many
instructions are seldom used. This is similar to a
Zipfian distribution that is often associated with
human and artificial languages (Louridas, Spinellis
and Vlachos 2008).

Figure 3: Instruction Frequency Distribution.

The ranked frequency distribution for co-
occurring instruction pairs is similar to that for
instructions although it is more pronounced. A much

smaller percentage of instruction pairs co-occur
frequently while the vast majority occurs
infrequently or not at all. Again the tail is long and
thin.

4.2 Coverage of Unseen Code

By definition the derived subsets will always give
100% coverage of the code that was used to create
them. In other words, all of the instructions in each
program unit instruction subset will be found
together in at least one single derived instruction
subset. However, this is not the purpose for which
the derived subsets are created.

To be useful the derived subsets should also
provide a high level of coverage for code that was
not used for their creation. The level of coverage for
unseen code was determined by nominating a
percentage of the input code as a training set from
which the derived subsets were then produced. The
derived subsets that were produced in this way could
then either be tested against a different section of the
input codebase or else all of it.

Figure 4: Unseen Code Coverage for Different Training
Set Percentages and Subset Sizes.

To understand the relative coverage that was
achieved using training sets of different sizes,
subsets were produced using 10% to 100% of the
available code in 10% increments. In each case the
derived subsets were then evaluated against the
entire codebase. These results are shown in Figure 4.
These tests were executed over 50 times and it was
clear early on that subsets produced using a
relatively small percentage of the codebase can
provide high coverage. For subset size 10 just 1% of
the code produces subsets that provide 77.31%
coverage.

Other tests - that are not reported here - were
carried out to ensure the particular section of code
from which the training set was taken had no
adverse impact on the results.

Figure 5: Number of Subsets Required by Subset Size.

4.3 Number of Subsets

As we have already noted the number of derived
subsets required depends to a large extent on the
maximum derived subset size. Figure 5 shows the
numbers of derived subsets for various maximum
sizes. Generally, the number of subsets reduces
exponentially with increasing maximum subset size.
That the number for maximum size 10 is less than
20 is probably due to the fixed size of the derived
subset headroom in combination with the skewed
subset size distribution.

The numbers of derived subsets are within what
we would consider acceptable in order to support
Zoea clustering. It is possible to reduce the number
of subsets further by various means although these
will also reduce some of the coverage for unseen
code. For example, some of the subsets are
redundant when considered solely in terms of
coverage of the training set. In addition, many
individual instructions can be removed from subsets
on the same basis.

Another important factor is how the number of
required subsets grows as the size of the training set
is increased. This growth is not linear but instead
decreases with each increment. The decreasing rate
of growth suggests that subset size eventually
stabilizes rather than growing indefinitely.

4.4 Search Space Reduction

The original motivation for using instruction subsets
is to distribute work across many worker nodes in a
cluster. An additional benefit which was not
anticipated at the outset is that the size of the search
space is also significantly reduced. It is easy to see
why this is the case.

The search space for code approximates to a tree
of a given depth with a branching factor largely
determined by the number of instructions. Various
approaches have been published for estimating the

size of such a search tree (Kilby et. al. 2006).
However, the reality in inductive programming is a
little more complicated. Different instructions have
different numbers of arguments and the data flows
may span any number of levels forming a graph
rather than a tree.

A more accurate estimate of cumulative search
space size can be achieved by considering the
number of values generated as successive layers of
instructions are added. Inputs are considered to exist
at level zero. If all instructions are applied at each
level then single argument instructions must take
their input from the previous level whereas two
argument instructions only require one value from
the previous level and another from any level. In this
approach the number of search space nodes at a
given level is the current total number of values
excluding inputs.

Figure 6 shows the impact of different subset
sizes on the size of the search space. This shows
very large reductions in search space size –
particularly for subsets of size 10. This is largely due
to the reduction in branching factor from around 200
to 10. Note that the results in Figure 6 have already
been multiplied by the corresponding number of
subsets, although this makes little difference to the
relative scale of the results.

It is clear that distributing the work across a
number of nodes in this manner does not just enable
the work to be completed more quickly. It also
effectively reduces the overall amount of work that
needs to be done.

If we didn't know any better then we might
assume that human developers use all possible
instruction subsets when they code. The results show
that this is not the case. As we have seen the
distribution of instructions that human coders use is
heavily skewed and the distribution of pairs of
instructions is even more so. This means that the
occurrence of the majority of instruction pairs is
vanishingly small in human originated code. The
same must also apply to the distribution of
instruction pairs in any instruction subsets derived
from code.

We might also assume that all instruction subsets
are required in order to write any possible piece of
code. It is unknown whether or not this is actually
the case. There are often many different ways of
writing functionally equivalent programs using
different subsets of instructions.

In any event people seem to get by using a
relatively small proportion of all possible instruction
subsets. This means there are a great many subsets
that are not used very often - if at all. Every

instruction subset, that does not include all
instructions, accounts for a different and somewhat
overlapping subset of the complete search space.
Effectively it is the instruction subsets that are not
used that account for the reduction in the size of the
search space.

Figure 6: Search Space Reduction for Different Instruction
Subset Sizes.

4.5 Subset Overlap

Instruction subsets often overlap. This is intentional
and reflects the fact that instructions used in
different program units frequently intersect. It is also
partly due to the clustering process. The median
overlap for subset size 10 is around 20% and for size
50 is around 40%. As a result there might be a
concern that an excessive amount of effort may be
wasted when using the subsets to partition work.

This is only true if the programs we are
searching for are very small. However, as the size of
the search space grows with increasingly longer
programs the influence of instructions that are
shared between subsets diminishes very quickly as
shown in Figure 7.

Estimation of duplicate effort uses the same
approach outlined earlier for search space size.
Duplicated work at a given level corresponds to the
size of the search space subtree for overlapping
instructions only, divided by the size of the tree for
the subset size number of instructions.

Figure 7: Proportion of Redundant Activity for Different
Subset Overlap Percentages.

As the search tree grows, any values that have
been produced using any non-duplicated instruction

are distinct. Thus the proportion of values at each
level that are produced exclusively from duplicated
instructions quickly becomes insignificant. Similar
duplication of effort is often tolerated in other
techniques such as iterative deepening depth first
search where the relative overhead is seen as
marginal.

5 DISCUSSION AND FUTURE
WORK

The frequency distribution of individual instructions
can be seen as a fundamental form of software
development knowledge. This distribution is highly
skewed yet it is not altogether clear why this is the
case or whether it has to be this way. Certainly many
software developers would be aware of it, at least on
reflection. Yet it does not seem to be a topic that has
attracted much scientific attention.

Similarly, the co-occurrence of instructions in
instruction subsets can be viewed as another very
basic form of coding knowledge. Given that this has
the potential to significantly reduce the size of the
search space it can be viewed as an important form
of tacit knowledge. Nevertheless this topic has
received even less attention. This is not entirely
surprising as superficially it seems like an
unpromising line of enquiry – given the numbers of
subsets involved and the degree of overlap between
them.

In conducting this work it has become clear that
there is a key trade-off between clustering and
merging/amplification. While it is certainly possible
to produce many fewer subsets through more
aggressive clustering this comes at the price of less
coverage for unseen code. We do not claim to have
identified the optimum position on this continuum
and more work in this area would be interesting.
However, the current results are sufficient to support
the initial operational deployment of this approach in
Zoea - which is currently on-going.

By conceding that candidate solutions will only
come from defined subsets of instructions we are
accepting a compromise. We are willing to take any
solution, potentially produced much faster, but there
may be a small percentage of cases for which this
approach might not succeed. More work will be
required to quantify operational success in terms of
generated solutions that meet the specification.

Other approaches to producing instruction
subsets and alternative clustering algorithms are

possible. Some of these may produce smaller sets of
subsets and/or deliver greater coverage.

It is assumed that the results would also hold for
other imperative programming languages. Most
mainstream languages are very similar at the
instruction level although the names and availability
of some instructions can vary. It is unknown whether
the approach would be beneficial in markedly
different software development paradigms such as
logic programming.

It is also assumed that the code sample used is
representative of other code. The code used came
from a single if large and popular source. In
mitigation a large sample from many different
repositories was used. However, code from smaller
repositories and from other hosting sites may give
different results.

Some instructions occur very frequently in the
instruction subsets. One option would be to remove
the most frequent instructions from the subsets and
simply assume they always apply. This would have a
dramatic effect on the size and number of the
subsets. However, there is no clear boundary that
separates frequent from infrequent instructions.

It is worth noting that instruction subsets are
capable of generating many more programs than
those from which they were derived. Also, lack of
coverage does not mean that an equivalent program
cannot be produced. There are many different ways
to produce a functionally equivalent program –
sometimes using different instructions.

Some of the individual subsets provide much
more program coverage than others. This
information could be used to prioritise the
assignment of cluster jobs to increase the probability
that a solution is found early.

This approach should be useful in any problem
that involves searching a program configuration
space. Integration should be a simple matter in any
software that utilises a defined list of instructions. It
is also worth considering whether a similar approach
might be useful in domains beyond inductive
programming. Combinatorial problems are common
and the partitioning of work to better utilise large
numbers of cores is a priority as well as being
difficult.

The current work considers subset construction
as an offline activity. In operational deployment this
could alternatively be a continuous process.
Similarly, the current focus is on subsets
corresponding to human originated code. In the
future machine generated code could be more
abundant and it may be that instruction subsets
derived from that would be different. In any event it

makes no difference to Zoea where the subsets come
from or how they are created.

It has long been suggested that neural and
symbolic approaches to AI should be integrated
(Kautz 2022). This will also require changes to how
these technologies are used. The instruction subset
approach isn’t deep learning but is a step in that
direction. While we have used the term ‘training’ in
this paper, it is really an exercise in the elicitation of
largely tacit knowledge. The data extracted from the
code sample is both generic and very sparse. It also
undergoes very little processing. The instruction
subsets are completely human readable and as a
result the whole process is transparent. What the
approach does share with deep learning is the
characteristic that rules are not written by people but
rather produced mechanically and en masse.

Finally, it is a little surprising that there was
anything new to learn in this area. In a way it shows
the extent to which we still don't really understand
what software is.

6 ETHICAL CONSIDERATIONS

The information extracted from the input source
code was limited to the co-occurrence of instructions
within each program unit. This is a flat list of the
instruction names in alphabetic order.

It is important to note that in most cases these
lists of instructions are not unique to the code they
came from. Instead they are exceptionally common
both as literal copies and also as subsets of one
another. The use of instruction subsets cannot be
considered a rights violation otherwise virtually all
code in existence would already be in breach.

None of the information extracted represents or
contains any executable code or information about
any program, algorithm or fragment thereof. Also,
there is nothing about the way in which this
information will be used that could cause any similar
or identical code to be generated, other than by pure
chance. As such there can be no sense in which the
copyright or intellectual property of the respective
authors or the terms of any license have been
violated.

7 CONCLUSIONS

We have outlined a technique for partitioning the
search space of inductive programming using
instruction subsets. This approach enables us to

distribute inductive programming work across many
computer cores by assigning each a distinct but
overlapping subset of instructions. Testing suggests
that the subsets generalise quickly, particularly when
they are merged. This indicates that they should
continue to work well even for completely different
code. We have also shown that the use of instruction
subsets reduces the size of the search space, in some
cases by many orders of magnitude. Finally, we
have demonstrated that the degree of duplication of
effort as a result of overlapping instruction subsets
quickly becomes insignificant as program size
increases. We also believe our approach to be ethical
in the sense that it does not exploit the intellectual
property of open source developers.

ACKNOWLEDGEMENTS

This work was supported entirely by Zoea Ltd. Zoea
is a trademark of Zoea Ltd. Any other trademarks
are the property of their respective owners. The
authors acknowledge and respect the rights of open
source developers.

REFERENCES

Brown, T. B.; Mann, B.; Ryder, N.; Subbiah, M.; Kaplan,
J.; Dhariwal, P.; Neelakantan, A.; Shyam, P.; Sastry,
G.; Askell, A.; Agarwal, S.; Herbert-Voss, A.;
Krueger, G.; Henighan, T.; Child, R.; Ramesh, A.;
Ziegler, D. M.; Wu, J.; Winter, C.; Hesse, C.; Chen,
M.; Sigler, E.; Litwin, M.; Gray, S.; Chess, B.; Clark,
J.; Berner, C.; McCandlish, S.; Radford, A.; Sutskever,
I.; Amodei, D. (2020). Language Models are Few-Shot
Learners. arXiv pre-print. arXiv:2005.14165 [cs.CL].
Ithaca, NY: Cornell University Library.

Cropper‚ A.; Dumancic, S.; Muggleton, S. H. (2020).
Turning 30: New Ideas in Inductive Logic
Programming. In Proceedings of the Twenty−Ninth
International Joint Conference on Artificial In-
telligence‚ IJCAI 2020. Vienna:ijcai.org. pp. 4833–
4839.

Flener, P., Schmid, U. (2008). An introduction to
inductive programming. Artificial Intelligence Review
29(1), 45-62. doi.org/ 10.1007/s10462-009-9108-7.

Galwani, S.; Hernandez-Orallo, J.; Kitzelmann, E.;
Muggleton, S. H.; Schmid, U.; Zorn, B. (2015).
Inductive Programming Meets the Real World.
Communications of the ACM 58(11), 90–99. doi.org/
10.1145/2736282.

Kautz, H. (2022). The Third AI Summer: AAAI Robert S.
Engel-more Memorial Lecture. AI Magazine. 43(1):
93–104. doi.org/10.1609/aimag.v43i1.19122.

Kilby, P.; Slaney, J. K.; Thiébaux, S.; Walsh, T. (2006).
Estimating Search Tree Size. In Proceedings of the
Twenty-First National Conference on Artificial
Intelligence AAAI 2006. Boston:AAAI Press. 1014-
1019.

Kitzelmann, E. (2010). Inductive programming: A survey
of program synthesis techniques. Approaches and
Applications of Inductive Programming. Lecture
Notes in Computer Science 5812, 50–73. Berlin,
Springer-Verlag.

Lemley, M. A., Casey B. (2021). Fair Learning. Texas
Law Review 99(4): 743-785.

Martelli, A.; Ravenscroft, A.; Holden, S. (2017). Python in
a Nutshell, 3rd Edition. Sebastopol: O'Reilly Media,
Inc. ISBN: 9781449392925.

Microsoft. (2022). GitHub. https://www.github.com.
Accessed: 2022-11-06.

Nguyen, N., Nadi, S. (2022). An Empirical Evaluation of
GitHub Copilot's Code Suggestions. In Proceedings of
the IEEE/ACM 19th International Conference on
Mining Software Repositories (MSR), 2022, pp. 1-5.
doi.org/10.1145/3524842.3528470.

Louridas, P.; Spinellis, D.; Vlachos. V. (2008). Power
laws in software. ACM Transactions on Software
Engineering and Methodology 18(1): 1-26.
doi.org/10.1145/1391984.1391986.

McDaid, E., McDaid, S. (2019). Zoea – Composable
Inductive Programming Without Limits. arXiv
preprint. arXiv:1911.08286 [cs.PL]. Ithaca, NY:
Cornell University Library.

McDaid, E., McDaid, S. (2021). Knowledge-Based
Composable Inductive Programming. In Proceedings
Artificial Intelligence XXXVIII: 41st SGAI
International Conference on Artificial Intelligence, AI
2021, Cambridge, UK, December 14–16, 2021,
Springer-Verlag. doi.org/10.1007/978-3-030-91100-
3_13.

Petke, J.; Haraldsson, S.; Harman, M.; Langdon, W. B.;
White, D.; Woodward, J. (2018). Genetic
Improvement of Software: a Comprehensive Survey.
IEEE Transactions on Evolutionary Computation.
22(3): 415-432.
doi.org/10.1109/TEVC.2017.2693219.

Ray, B.; Posnett, D.; Filkov, V.; Devanbu, P. (2014). A
large scale study of programming languages and code
quality in github. In Proceedings of the 22nd ACM
SIGSOFT International Symposi-um on Foundations
of Software Engineering (FSE 2014). New York:
Association for Computing Machinery. pp. 155–165.
doi.org/10.1145/2635868.2635922.

Xu, F. F.; Alon, U.; Neubig, G.; Hellendoorn, V. J. (2022).
A systematic evaluation of large language models of
code. In Proceed-ings of the 6th ACM SIGPLAN
International Symposium on Machine Programming.
New York: Association for Computing Machinery. pp.
1–10. doi.org/10.1145/3520312.3534862.

