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Abstract: Inductive programming frequently relies on some form of search in order to identify candidate solutions. 
However, the size of the search space limits the use of inductive programming to the production of 
relatively small programs. If we could somehow correctly predict the subset of instructions required for a 
given problem then inductive programming would be more tractable. We will show that this can be 
achieved in a high percentage of cases. This paper presents a novel model of programming language 
instruction co-occurrence that was built to support search space partitioning in the Zoea distributed 
inductive programming system. This consists of a collection of intersecting instruction subsets derived from 
a large sample of open source code. Using the approach different parts of the search space can be explored 
in parallel. The number of subsets required does not grow linearly with the quantity of code used to produce 
them and a manageable number of subsets is sufficient to cover a high percentage of unseen code. This 
approach also significantly reduces the overall size of the search space - often by many orders of magnitude. 
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1 INTRODUCTION 

The use of AI to assist in or even to automate the 
generation of computer software is an active area of 
research (e.g. Xu et. al. 2022, Nguyen and Nadi 
2022). Many current systems are based on deep 
learning and recent work includes the use of large 
language models such as GPT-3 (Brown et. al. 
2020). These involve training on large quantities of 
code although this can also raise concerns about 
transparency and ethics (Lemley and Casey 2021). 

Work also continues on other approaches that are 
not traditionally associated with training (Cropper, 
Dumancic and Muggleton 2020, Petke et. al. 2018). 
Inductive programing aims to generate code directly 
from some form of specification – often in the form 
of input-output examples or test cases (Flener and 
Schmid 2008). Various techniques for inductive 
programming have been developed but 
fundamentally many of these rely on some form of 
search (Kitzelmann 2010).  

Other than for trivial cases it is not possible to 
determine the outcome of a computation directly 
from source code without also executing the 
program. As a result some form of generate and test 
approach is unavoidable. 

In computer programs a large number of 
language elements can be combined in many ways 
to quickly produce enormous numbers of candidate 
solutions. The size of the search space has limited 
inductive programming systems to the production of 
relatively small programs (Galwani et. al. 2015). 

A major source of combinatorial growth in 
inductive programming is the number of 
instructions, comprising core language and standard 
library functions, and operators. This number varies 
by programming language but is frequently around 
200 and can be more.  It has been suggested that if 
we could somehow correctly predict the subset of 
instructions that were actually required for a given 
program then the problem of inductive programming 
would be easier and larger programs could be 
produced with given resources (McDaid 2019).  

One way to produce slightly larger programs in a 
given time period is to distribute the work across 
many computers. In order to do this we need to 
partition the search space. Partitioning on the 
instruction set is attractive as most programs use a 
relatively small subset of instructions. In which case 
how do we define the subsets we will use? 

This paper presents the results of a study that 
was carried out to inform the definition of 
instruction subsets for the Zoea inductive 
programming system (McDaid 2021). The initial 

sections in this paper describe our approach to the 
production and evaluation of instruction subsets. We 
then go on to discuss some significant findings that 
only became apparent once this work had been 
completed. 

2 PRELIMINARIES 

Let C be a source code program in a high level 
imperative programming language L. C is composed 
of one or more program units U - corresponding to 
procedures, functions or methods. L provides a set of 
instructions IL comprising built in operators, core 
and standard library functions. Each U contains a set 
of instructions IU where IU ⊆ IL ∧ IU ≠ Ø. 

Given a collection of programs SP1 we can 
enumerate the corresponding family of program unit 
instruction subsets SIU where SIU ∈ P(IL) ∧ SIU 
≠ Ø. (Here P refers to the power set.) 

IU is said to cover U if IU is the instruction 
subset for U or IU is the instruction subset for a 
different U and a superset of the IU for U. Each IU 
trivially covers the corresponding U. We can also 
say that SIU covers SP1. Coverage for a set of 
programs is quantified as the number of covered 
program units divided by the total number of 
program units expressed as a percentage. 

Any IU that is a subset of another IU can be 
removed from SIU without affecting the overall 
coverage of SIU wrt SP1. Two or more IUs can be 
combined to form a new derived instruction subset 
ID. ID provides the same aggregate coverage as its 
component IUs wrt SP1. 

SID is a family of instruction subsets comprising 
all IUs (that have not been removed or merged) 
union all IDs. SID provides the same coverage as the 
original SIU wrt SP1. We can enforce an upper limit 
M1 on |IU| and an upper limit M2 on |ID| during the 
creation of SID. Any U where |IU| > M1 is silently 
ignored. M2 constrains which subsets of SIU (IUs) 
can be combined to form IDs. 

Any number of IDs can be created providing 
their respective component IUs are also removed 
and |ID| <= M2. Once created SID can then be 
evaluated in terms of the coverage it provides wrt a 
different set of programs SP2. 
  



3 APPROACH 

3.1 Objectives 

The primary goal of this work was to define a set of 
instruction subsets to support efficient clustering in 
the Zoea inductive programming system (McDaid 
2021). Zoea employs a distributed blackboard 
architecture comprising many knowledge sources 
that operate in parallel. Knowledge source 
activations can also be partitioned according to 
instruction subsets. 

Currently Zoea can efficiently utilise up to 
around 100 cores and it can create millions of 
activations in solving a problem. Efficiently utilising 
larger numbers of cores requires more fine-grained 
partitioning of the instruction set. This will enable 
Zoea to better leverage cloud-based deployment. 

The number of subsets required to provide 
sufficient coverage for a wide variety of programs 
was unknown in advance. Based on experience in 
tuning the current system hundreds to thousands of 
subsets would likely result in acceptable 
performance. 

This work evolved from and ultimately 
superseded an earlier effort to define random 
subsets, which is not described here in any detail. 
The strategy of deriving subsets from existing code 
was seen as a potential way to make subsets more 
representative of human originated software. It was 
also apparent that any such subsets would need to 
intersect with one another to some extent. 

The target size of the instruction subsets is an 
important consideration. Smaller subsets make it 
possible to find programs with fewer instructions in 
a search space in less time. However, we also need 
to be able to produce programs with larger numbers 
of instructions. This suggests the use of multiple sets 
of instruction subsets of different sizes. In this 
scheme the subset size defines an upper limit on the 
number of unique instructions but not the size of the 
program that can be found. Operationally these can 
be used to either try to find programs with fewer 
unique instructions first or at the same time. The 
target subset sizes evaluated were 10 to 100 in 
increments of 10.  

Input to the subset creation process is a set of 
non-empty program unit instruction subsets of 
various sizes. These are presented in the order in 
which they occur in the source code. No other 
associated metadata is provided. Often many of the 
input subsets are duplicates. 

Depending on how much code is used there can 
be many program subsets and we would like to have 

a much smaller number of derived subsets. In broad 
terms this can be seen as a form of clustering. To 
enable program subsets to be clustered the derived 
subsets are allowed to be somewhat larger by a 
configurable amount. In producing derived 
instruction subsets of a given size we simply ignore 
any program subsets that are larger. 

For a given derived subset size every program 
unit subset of that size or smaller will itself be a 
subset of at least one derived subset. This means that 
each of the largest program unit subsets will 
effectively form the core of one derived subset. The 
pigeonhole principle implies that there will be a 
minimum number of derived subsets required simply 
to accommodate the larger program subsets within 
them. This also suggests that we should process the 
larger program subsets first. If we process the input 
subsets in descending size order then at some stage 
the space remaining in the already partially 
populated derived subsets will be sufficient for 
smaller program subsets to be merged. 

The performance of a set of derived instruction 
subsets can be measured by counting the number of 
unseen programs with an equal or smaller number of 
unique instructions that they cover. By unseen we 
simply mean programs that were not used for the 
production of the subsets. A program is covered by a 
set of subsets if all of its instructions are present in at 
least one of the subsets. This implies that any 
exhaustive search of the spaces defined by the 
subsets will eventually locate a covered program. 

In summary, the key objectives were: to create 
sets of instruction subsets for different maximum 
subset sizes; to understand how many subsets are 
required for different subset maximum sizes; and 
determine the coverage for unseen code provided by 
the subsets created. 

3.2 Method 

Instruction subsets need to be representative of real 
world software, which implies they should also be 
derived from the same. A large quantity of code is 
required to ensure sufficient variety and ideally it 
should be the product of many different developers 
from a variety of contexts. The code also needs to be 
legally and ethically available. 

GitHub (Microsoft 2022) was identified as a 
suitable source of software and it has been used in 
the past for similar analyses of code (Ray et. al. 
2014). We used the largest 1,000 repositories on 
GitHub (as of 13 May 2022) and limited our analysis 
to Python (Martelli, Ravenscroft and Holden, 2017) 
programs only. Python was selected on the basis that 



it is a fairly popular language and the available 
instructions are representative of similar languages.  

In each case the complete repository was 
downloaded as a zip file, extracted and non-Python 
files were discarded. Each Python program was split 
into program units (classes, methods, functions and 
mains) and tokenised using simple custom code 
based on regular expressions. Two of the 
repositories were excluded due to parsing errors. 
From the identified tokens the occurrences of each 
of a specific set of instructions were counted. 
Instructions that have no meaning in Zoea, such as 
those relating to variable assignment, were either 
mapped to an equivalent instruction if possible or 
else excluded. (E.g. '+=' is mapped to '+' while '=' is 
excluded.) No code or other information was used in 
any other way. The output of this step was a flat list 
of unique instruction names in alphabetical order for 
each program unit. 

The analysis included 71,972 Python files 
containing 15,749,416 lines of code or 580,476,516 
characters. From this 886,421 program units were 
identified. For each program unit the subset of 
instructions it contains was recorded. Many of the 
instruction subsets so identified were duplicates and 
when these were removed 345,120 unique 
instruction subsets remained. 

During processing the instruction subsets were 
filtered to remove any that are proper subsets of 
another instruction subset. That is, if all of the 
instructions of subset A also occur in subset B then 
subset A is deleted. This process was repeated until 
no further subsets were deleted. This left 33,823 
instruction subsets. These varied in size between 1 
and 74 instructions (median: 3, standard deviation: 
3.67). Many of the unique instruction subsets were 
very similar to one another, differing by only one or 
two instructions. 

 
Figure 1: Overview of Subset Creation. 

3.3 Clustering Algorithm 

Figure 1 gives a conceptual overview of the subset 
creation process. Producing derived instruction 
subsets (IDs) from program unit instruction subsets 
(IUs) is essentially a clustering problem. A number 
of different clustering algorithms were developed 
and evaluated. The end result incorporates the two 
most successful of these together with some pre- and 
post-processing. Pseudo-code for the software is 
shown in Algorithm 1. 

When a set of derived instruction subsets is 
created this is always with respect to a specified 
maximum subset size. This size limit also 
determines the target number of derived subsets as 
described in more detail later in this section. 
 

delete any duplicate IUs 
amplify IUs (see section 3.4) 
delete IUs that are subsets of IU’ 
foreach IU do 
  find Instr, Subsets where  
    Instr is not a subset of IU and 
    length(IU ∪ Instr) is maximum 
  Let IU = IU ∪ { Instr } 
  delete all IUs in Subsets 
end foreach 
create NumIDs empty IDs 
foreach IU do 
  if exists( empty ID ) then 
    Let ID = IU 
  else 
    find IDs with max( | ID ∩ IU | ) 
    choose ID with min( | ID | ) 
    Let ID = ID ∪ IU 
  end if 
end foreach 
merge IDs where size <= MaxIdSize 
return set of IDs 

Algorithm 1: Clustering algorithm. 

Input subsets are processed in decreasing order 
of size. In order to improve performance all 
instruction subsets are kept internally sorted at all 
times.  

Pre-processing involves de-duplication, 
amplification and subset removal. Amplification is 
described in the next section. Many input subsets are 
duplicates of which set one is retained. Any input 
subset that is wholly contained within another input 
subset is also removed. 

The first clustering stage attempts to subsume the 
largest number of near subsets by adding a single 
additional instruction to each IU in turn. In choosing 
which instruction to add the algorithm determines 
how many other IUs will become subsets of the 



current IU if that instruction is added. The 
instruction that results in the removal of the greatest 
number of other IUs is selected. 

The second clustering stage tries to merge each 
IU with the ID with which it has the greatest 
intersection. This involves pre-creating a specified 
number of empty IDs and then either populating the 
empty IDs or else merging the IU into the ID with 
both the largest intersection and the most remaining 
capacity. If all IDs are at their maximum capacity 
then additional empty IDs are created.  

Post-processing involves merging any remaining 
small IUs and non-full IDs together. This is driven 
entirely by subset size and ignores similarity.  

As noted already, the algorithm allows for the 
specification of both a maximum subset size and a 
target number of subsets. However, the number of 
subsets requested is not necessarily honoured if this 
proves to be impossible, in which case a minimal 
number of additional subsets are created. For each 
subset size the approximate number of subsets 
required is determined in advance by code that 
iterates over possible values in ascending order. The 
number of subsets required is detected when the 
number of subsets created equals the number of 
subsets requested. Given this requires considerable 
time the process has only been done in increments so 
the figures obtained are approximate, within the size 
of the increment. 

3.4 Amplification 

Initially, the process of merging subsets was simply 
seen as a way to reduce the number of derived 
subsets and to help standardize their sizes. However, 
it was observed that coverage against unseen code 
improved significantly after merging. This is partly 
because larger subsets provide better coverage than 
do small ones since they have a greater number of 
subsets. Also, combining different instruction 
subsets from unrelated code has similarities to 
software composition. Merging input subsets 
introduces additional intra-subset instruction co-
occurrence variety that would not otherwise be 
present. It is interesting to note that adding an 
equivalent number of random instructions rather 
than merging does not give any detectable benefit. 

In order to take greater advantage of this 
phenomenon an amplification step was introduced 
where smaller input subsets are merged with one 
another before clustering to create additional 
artificial program subsets. This was not explored 
systematically but the benefits do not seem to 
continue to accrue beyond a 50% increase in the 

number of subsets. Further work in this area may be 
fruitful. 

4 RESULTS 

4.1 Input Data 

Figure 2 shows the size frequency distribution of the 
program unit instruction subsets. This contains both 
the numbers of subsets of different sizes and the 
cumulative percentage of the number of program 
units for each subset size. From this it can be seen 
that around 90% of program units have instruction 
subsets containing 10 or fewer unique instructions. 
Also, only around 2% of program unit subsets 
contain 20 or more instructions. 

 
Figure 2: Program Unit Instruction Subset Size Frequency 
Distribution. 

Figure 3 gives the frequency distribution for 
instructions across all of the code used. Here 
instructions are ranked in order of descending 
frequency. This shows that a small number of 
instructions are used very frequently and that many 
instructions are seldom used. This is similar to a 
Zipfian distribution that is often associated with 
human and artificial languages (Louridas, Spinellis 
and Vlachos 2008). 

 
Figure 3: Instruction Frequency Distribution. 

The ranked frequency distribution for co-
occurring instruction pairs is similar to that for 
instructions although it is more pronounced. A much 



smaller percentage of instruction pairs co-occur 
frequently while the vast majority occurs 
infrequently or not at all. Again the tail is long and 
thin. 

4.2 Coverage of Unseen Code 

By definition the derived subsets will always give 
100% coverage of the code that was used to create 
them. In other words, all of the instructions in each 
program unit instruction subset will be found 
together in at least one single derived instruction 
subset. However, this is not the purpose for which 
the derived subsets are created. 

To be useful the derived subsets should also 
provide a high level of coverage for code that was 
not used for their creation. The level of coverage for 
unseen code was determined by nominating a 
percentage of the input code as a training set from 
which the derived subsets were then produced. The 
derived subsets that were produced in this way could 
then either be tested against a different section of the 
input codebase or else all of it. 

 
  

Figure 4: Unseen Code Coverage for Different Training 
Set Percentages and Subset Sizes. 

To understand the relative coverage that was 
achieved using training sets of different sizes, 
subsets were produced using 10% to 100% of the 
available code in 10% increments. In each case the 
derived subsets were then evaluated against the 
entire codebase. These results are shown in Figure 4. 
These tests were executed over 50 times and it was 
clear early on that subsets produced using a 
relatively small percentage of the codebase can 
provide high coverage. For subset size 10 just 1% of 
the code produces subsets that provide 77.31% 
coverage. 

Other tests - that are not reported here - were 
carried out to ensure the particular section of code 
from which the training set was taken had no 
adverse impact on the results. 

 
 

Figure 5: Number of Subsets Required by Subset Size. 

4.3 Number of Subsets 

As we have already noted the number of derived 
subsets required depends to a large extent on the 
maximum derived subset size. Figure 5 shows the 
numbers of derived subsets for various maximum 
sizes. Generally, the number of subsets reduces 
exponentially with increasing maximum subset size. 
That the number for maximum size 10 is less than 
20 is probably due to the fixed size of the derived 
subset headroom in combination with the skewed 
subset size distribution. 

The numbers of derived subsets are within what 
we would consider acceptable in order to support 
Zoea clustering. It is possible to reduce the number 
of subsets further by various means although these 
will also reduce some of the coverage for unseen 
code. For example, some of the subsets are 
redundant when considered solely in terms of 
coverage of the training set. In addition, many 
individual instructions can be removed from subsets 
on the same basis. 

Another important factor is how the number of 
required subsets grows as the size of the training set 
is increased. This growth is not linear but instead 
decreases with each increment. The decreasing rate 
of growth suggests that subset size eventually 
stabilizes rather than growing indefinitely. 

4.4 Search Space Reduction 

The original motivation for using instruction subsets 
is to distribute work across many worker nodes in a 
cluster. An additional benefit which was not 
anticipated at the outset is that the size of the search 
space is also significantly reduced. It is easy to see 
why this is the case. 

The search space for code approximates to a tree 
of a given depth with a branching factor largely 
determined by the number of instructions. Various 
approaches have been published for estimating the 



size of such a search tree (Kilby et. al. 2006). 
However, the reality in inductive programming is a 
little more complicated. Different instructions have 
different numbers of arguments and the data flows 
may span any number of levels forming a graph 
rather than a tree.  

A more accurate estimate of cumulative search 
space size can be achieved by considering the 
number of values generated as successive layers of 
instructions are added. Inputs are considered to exist 
at level zero. If all instructions are applied at each 
level then single argument instructions must take 
their input from the previous level whereas two 
argument instructions only require one value from 
the previous level and another from any level. In this 
approach the number of search space nodes at a 
given level is the current total number of values 
excluding inputs. 

Figure 6 shows the impact of different subset 
sizes on the size of the search space. This shows 
very large reductions in search space size – 
particularly for subsets of size 10. This is largely due 
to the reduction in branching factor from around 200 
to 10. Note that the results in Figure 6 have already 
been multiplied by the corresponding number of 
subsets, although this makes little difference to the 
relative scale of the results. 

It is clear that distributing the work across a 
number of nodes in this manner does not just enable 
the work to be completed more quickly. It also 
effectively reduces the overall amount of work that 
needs to be done. 

If we didn't know any better then we might 
assume that human developers use all possible 
instruction subsets when they code. The results show 
that this is not the case. As we have seen the 
distribution of instructions that human coders use is 
heavily skewed and the distribution of pairs of 
instructions is even more so. This means that the 
occurrence of the majority of instruction pairs is 
vanishingly small in human originated code. The 
same must also apply to the distribution of 
instruction pairs in any instruction subsets derived 
from code. 

We might also assume that all instruction subsets 
are required in order to write any possible piece of 
code. It is unknown whether or not this is actually 
the case. There are often many different ways of 
writing functionally equivalent programs using 
different subsets of instructions.  

In any event people seem to get by using a 
relatively small proportion of all possible instruction 
subsets. This means there are a great many subsets 
that are not used very often - if at all. Every 

instruction subset, that does not include all 
instructions, accounts for a different and somewhat 
overlapping subset of the complete search space. 
Effectively it is the instruction subsets that are not 
used that account for the reduction in the size of the 
search space. 

 
Figure 6: Search Space Reduction for Different Instruction 
Subset Sizes. 

4.5 Subset Overlap 

Instruction subsets often overlap. This is intentional 
and reflects the fact that instructions used in 
different program units frequently intersect. It is also 
partly due to the clustering process. The median 
overlap for subset size 10 is around 20% and for size 
50 is around 40%. As a result there might be a 
concern that an excessive amount of effort may be 
wasted when using the subsets to partition work.  

This is only true if the programs we are 
searching for are very small. However, as the size of 
the search space grows with increasingly longer 
programs the influence of instructions that are 
shared between subsets diminishes very quickly as 
shown in Figure 7.  

Estimation of duplicate effort uses the same 
approach outlined earlier for search space size. 
Duplicated work at a given level corresponds to the 
size of the search space subtree for overlapping 
instructions only, divided by the size of the tree for 
the subset size number of instructions. 

 
Figure 7: Proportion of Redundant Activity for Different 
Subset Overlap Percentages. 

As the search tree grows, any values that have 
been produced using any non-duplicated instruction 



are distinct. Thus the proportion of values at each 
level that are produced exclusively from duplicated 
instructions quickly becomes insignificant. Similar 
duplication of effort is often tolerated in other 
techniques such as iterative deepening depth first 
search where the relative overhead is seen as 
marginal.  

5 DISCUSSION AND FUTURE 
WORK 

The frequency distribution of individual instructions 
can be seen as a fundamental form of software 
development knowledge. This distribution is highly 
skewed yet it is not altogether clear why this is the 
case or whether it has to be this way. Certainly many 
software developers would be aware of it, at least on 
reflection. Yet it does not seem to be a topic that has 
attracted much scientific attention. 

Similarly, the co-occurrence of instructions in 
instruction subsets can be viewed as another very 
basic form of coding knowledge. Given that this has 
the potential to significantly reduce the size of the 
search space it can be viewed as an important form 
of tacit knowledge. Nevertheless this topic has 
received even less attention. This is not entirely 
surprising as superficially it seems like an 
unpromising line of enquiry – given the numbers of 
subsets involved and the degree of overlap between 
them. 

In conducting this work it has become clear that 
there is a key trade-off between clustering and 
merging/amplification. While it is certainly possible 
to produce many fewer subsets through more 
aggressive clustering this comes at the price of less 
coverage for unseen code. We do not claim to have 
identified the optimum position on this continuum 
and more work in this area would be interesting. 
However, the current results are sufficient to support 
the initial operational deployment of this approach in 
Zoea - which is currently on-going. 

By conceding that candidate solutions will only 
come from defined subsets of instructions we are 
accepting a compromise. We are willing to take any 
solution, potentially produced much faster, but there 
may be a small percentage of cases for which this 
approach might not succeed. More work will be 
required to quantify operational success in terms of 
generated solutions that meet the specification.  

Other approaches to producing instruction 
subsets and alternative clustering algorithms are 

possible. Some of these may produce smaller sets of 
subsets and/or deliver greater coverage. 

It is assumed that the results would also hold for 
other imperative programming languages. Most 
mainstream languages are very similar at the 
instruction level although the names and availability 
of some instructions can vary. It is unknown whether 
the approach would be beneficial in markedly 
different software development paradigms such as 
logic programming. 

It is also assumed that the code sample used is 
representative of other code. The code used came 
from a single if large and popular source. In 
mitigation a large sample from many different 
repositories was used. However, code from smaller 
repositories and from other hosting sites may give 
different results.   

Some instructions occur very frequently in the 
instruction subsets. One option would be to remove 
the most frequent instructions from the subsets and 
simply assume they always apply. This would have a 
dramatic effect on the size and number of the 
subsets. However, there is no clear boundary that 
separates frequent from infrequent instructions. 

It is worth noting that instruction subsets are 
capable of generating many more programs than 
those from which they were derived. Also, lack of 
coverage does not mean that an equivalent program 
cannot be produced. There are many different ways 
to produce a functionally equivalent program – 
sometimes using different instructions. 

Some of the individual subsets provide much 
more program coverage than others. This 
information could be used to prioritise the 
assignment of cluster jobs to increase the probability 
that a solution is found early.  

This approach should be useful in any problem 
that involves searching a program configuration 
space. Integration should be a simple matter in any 
software that utilises a defined list of instructions. It 
is also worth considering whether a similar approach 
might be useful in domains beyond inductive 
programming. Combinatorial problems are common 
and the partitioning of work to better utilise large 
numbers of cores is a priority as well as being 
difficult. 

The current work considers subset construction 
as an offline activity. In operational deployment this 
could alternatively be a continuous process. 
Similarly, the current focus is on subsets 
corresponding to human originated code. In the 
future machine generated code could be more 
abundant and it may be that instruction subsets 
derived from that would be different. In any event it 



makes no difference to Zoea where the subsets come 
from or how they are created. 

It has long been suggested that neural and 
symbolic approaches to AI should be integrated 
(Kautz 2022). This will also require changes to how 
these technologies are used. The instruction subset 
approach isn’t deep learning but is a step in that 
direction. While we have used the term ‘training’ in 
this paper, it is really an exercise in the elicitation of 
largely tacit knowledge. The data extracted from the 
code sample is both generic and very sparse. It also 
undergoes very little processing. The instruction 
subsets are completely human readable and as a 
result the whole process is transparent. What the 
approach does share with deep learning is the 
characteristic that rules are not written by people but 
rather produced mechanically and en masse.  

Finally, it is a little surprising that there was 
anything new to learn in this area. In a way it shows 
the extent to which we still don't really understand 
what software is. 

6 ETHICAL CONSIDERATIONS 

The information extracted from the input source 
code was limited to the co-occurrence of instructions 
within each program unit. This is a flat list of the 
instruction names in alphabetic order. 

It is important to note that in most cases these 
lists of instructions are not unique to the code they 
came from. Instead they are exceptionally common 
both as literal copies and also as subsets of one 
another. The use of instruction subsets cannot be 
considered a rights violation otherwise virtually all 
code in existence would already be in breach. 

None of the information extracted represents or 
contains any executable code or information about 
any program, algorithm or fragment thereof. Also, 
there is nothing about the way in which this 
information will be used that could cause any similar 
or identical code to be generated, other than by pure 
chance. As such there can be no sense in which the 
copyright or intellectual property of the respective 
authors or the terms of any license have been 
violated. 

7 CONCLUSIONS 

We have outlined a technique for partitioning the 
search space of inductive programming using 
instruction subsets. This approach enables us to 

distribute inductive programming work across many 
computer cores by assigning each a distinct but 
overlapping subset of instructions. Testing suggests 
that the subsets generalise quickly, particularly when 
they are merged. This indicates that they should 
continue to work well even for completely different 
code. We have also shown that the use of instruction 
subsets reduces the size of the search space, in some 
cases by many orders of magnitude. Finally, we 
have demonstrated that the degree of duplication of 
effort as a result of overlapping instruction subsets 
quickly becomes insignificant as program size 
increases. We also believe our approach to be ethical 
in the sense that it does not exploit the intellectual 
property of open source developers. 
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